双向门控循环单元BIGRU时序预测的matlab实现【源代码】

BIGRU简介:

BIGRU(Bidirectional Gated Recurrent Unit)是一种双向门控循环单元神经网络模型。它结合了双向循环神经网络(Bi-RNN)和门控循环单元(GRU)的特性,用于处理时序数据和序列建模任务。

在传统的循环神经网络(RNN)中,信息只能按时间顺序流动,无法同时考虑过去和未来的上下文信息。为了解决这个问题,BIGRU引入了双向循环神经网络的思想。它包含两个独立的RNN,一个按时间顺序处理输入序列,另一个按时间逆序处理输入序列。这样一来,BIGRU能够同时获取过去和未来的信息,更好地捕捉序列中的长期依赖关系。

另外,BIGRU使用了门控循环单元(GRU)作为其基本单元。GRU是一种比较简化的门控循环单元模型,类似于长短时记忆网络(LSTM),但参数量更少,计算成本更低。GRU通过门控机制来控制信息的流动,包括更新门、重置门和候选值,从而有效地解决了梯度消失和梯度爆炸的问题,并且能够更好地捕捉时序数据中的模式和规律。

BIGRU神经网络在时序数据处理和序列建模任务中具有广泛的应用。它可用于股票价格预测、天气预测、语音识别、机器翻译等任务,能够学习序列中的模式和规律,并通过双向结构和门控机制更准确地预测未来的数据。

总之,BIGRU神经网络是一种结合了双向循环神经网络和门控循环单元的模型,用于处理时序数据和序列建模任务,能够更好地捕捉序列中的长期依赖关系和重要模式,具有较好的性能和效果。

在matlab中BIGRU网络结构的搭建如下:

c 复制代码
%%	构建BIGRU
	bigru = layerGraph();
	
    bigru = addLayers(bigru,[
	sequenceInputLayer(inputSize,"Name","input")
	gruLayer(numhidden_units,'OutputMode','sequence',"Name","gru1")
	concatenationLayer(1, 2, "Name", "cat1")
    reluLayer('name','relu')
	fullyConnectedLayer(outputSize) %全连接层输出维度设置
	regressionLayer('name','out')
    ]);
	
	bigru =addLayers(bigru,[
	FlipLayer("flip1")
	gruLayer(numhidden_units,'OutputMode',"sequence","Name","gru2")
	FlipLayer("flip2")]);

    bigru = connectLayers(bigru, "flip2", "cat1/in2");
	bigru = connectLayers(bigru, "input", "flip1");

网络结构:

训练进度:

训练集结果:

测试集结果:

评价指标:

完整代码获取:BIGRU时序预测代码

相关推荐
自动驾驶小学生2 分钟前
Transformer和LLM前沿内容(1):Transformer and LLM(注定成为经典)
人工智能·深度学习·llm·transformer
机器学习之心12 分钟前
MATLAB基于RSM和MOGWO的440C不锈钢外圆磨削参数优化
matlab·rsm·不锈钢外圆磨削参数优化
longvoyage14 分钟前
MindSpore社区活动:在对抗中增强网络
网络·人工智能·深度学习
AI即插即用35 分钟前
即插即用系列 | MICCAI EM-Net:融合 Mamba 与频域学习的高效 3D 医学图像分割网络
网络·人工智能·深度学习·神经网络·学习·计算机视觉·视觉检测
元周民1 小时前
非厄米矩阵高精度计算预先判定需要的计算精度(matlab)
线性代数·matlab·矩阵
天`南1 小时前
【群智能算法改进】一种改进的金豺优化算法IGJO[1](动态折射反向学习、黄金正弦策略、自适应能量因子)【Matlab代码#94】
学习·算法·matlab
祝余Eleanor2 小时前
DAY 39 Dataset和Dataloader
人工智能·深度学习·神经网络·机器学习
XiaoMu_0012 小时前
验证码识别系统
python·深度学习
机器学习之心2 小时前
基于组合赋权法(BWM+CRITIC)与可拓云理论的综合风险评估模型MATLAB代码
matlab·组合赋权法·可拓云理论·综合风险评估模型
CoovallyAIHub2 小时前
告别“消失的小目标”:航拍图像检测新框架,精度飙升25.7%的秘诀
深度学习·算法·计算机视觉