双向门控循环单元BIGRU时序预测的matlab实现【源代码】

BIGRU简介:

BIGRU(Bidirectional Gated Recurrent Unit)是一种双向门控循环单元神经网络模型。它结合了双向循环神经网络(Bi-RNN)和门控循环单元(GRU)的特性,用于处理时序数据和序列建模任务。

在传统的循环神经网络(RNN)中,信息只能按时间顺序流动,无法同时考虑过去和未来的上下文信息。为了解决这个问题,BIGRU引入了双向循环神经网络的思想。它包含两个独立的RNN,一个按时间顺序处理输入序列,另一个按时间逆序处理输入序列。这样一来,BIGRU能够同时获取过去和未来的信息,更好地捕捉序列中的长期依赖关系。

另外,BIGRU使用了门控循环单元(GRU)作为其基本单元。GRU是一种比较简化的门控循环单元模型,类似于长短时记忆网络(LSTM),但参数量更少,计算成本更低。GRU通过门控机制来控制信息的流动,包括更新门、重置门和候选值,从而有效地解决了梯度消失和梯度爆炸的问题,并且能够更好地捕捉时序数据中的模式和规律。

BIGRU神经网络在时序数据处理和序列建模任务中具有广泛的应用。它可用于股票价格预测、天气预测、语音识别、机器翻译等任务,能够学习序列中的模式和规律,并通过双向结构和门控机制更准确地预测未来的数据。

总之,BIGRU神经网络是一种结合了双向循环神经网络和门控循环单元的模型,用于处理时序数据和序列建模任务,能够更好地捕捉序列中的长期依赖关系和重要模式,具有较好的性能和效果。

在matlab中BIGRU网络结构的搭建如下:

c 复制代码
%%	构建BIGRU
	bigru = layerGraph();
	
    bigru = addLayers(bigru,[
	sequenceInputLayer(inputSize,"Name","input")
	gruLayer(numhidden_units,'OutputMode','sequence',"Name","gru1")
	concatenationLayer(1, 2, "Name", "cat1")
    reluLayer('name','relu')
	fullyConnectedLayer(outputSize) %全连接层输出维度设置
	regressionLayer('name','out')
    ]);
	
	bigru =addLayers(bigru,[
	FlipLayer("flip1")
	gruLayer(numhidden_units,'OutputMode',"sequence","Name","gru2")
	FlipLayer("flip2")]);

    bigru = connectLayers(bigru, "flip2", "cat1/in2");
	bigru = connectLayers(bigru, "input", "flip1");

网络结构:

训练进度:

训练集结果:

测试集结果:

评价指标:

完整代码获取:BIGRU时序预测代码

相关推荐
饭饭大王66615 分钟前
当 AI 系统开始“自省”——在 `ops-transformer` 中嵌入元认知能力
人工智能·深度学习·transformer
TechWJ21 分钟前
CANN ops-nn神经网络算子库技术剖析:NPU加速的基石
人工智能·深度学习·神经网络·cann·ops-nn
心疼你的一切22 分钟前
拆解 CANN 仓库:实现 AIGC 文本生成昇腾端部署
数据仓库·深度学习·aigc·cann
哈__1 小时前
CANN加速图神经网络GNN推理:消息传递与聚合优化
人工智能·深度学习·神经网络
3GPP仿真实验室1 小时前
【Matlab源码】6G候选波形:OFDM-IM 增强仿真平台 DM、CI
开发语言·matlab·ci/cd
User_芊芊君子1 小时前
CANN_MetaDef图定义框架全解析为AI模型构建灵活高效的计算图表示
人工智能·深度学习·神经网络
哈哈你是真的厉害1 小时前
驾驭万亿参数 MoE:深度剖析 CANN ops-transformer 算子库的“核武库”
人工智能·深度学习·aigc·transformer
心疼你的一切1 小时前
模态交响:CANN驱动的跨模态AIGC统一架构
数据仓库·深度学习·架构·aigc·cann
小羊不会打字1 小时前
CANN 生态中的跨框架兼容桥梁:`onnx-adapter` 项目实现无缝模型迁移
c++·深度学习
白日做梦Q1 小时前
Anchor-free检测器全解析:CenterNet vs FCOS
python·深度学习·神经网络·目标检测·机器学习