双向门控循环单元BIGRU时序预测的matlab实现【源代码】

BIGRU简介:

BIGRU(Bidirectional Gated Recurrent Unit)是一种双向门控循环单元神经网络模型。它结合了双向循环神经网络(Bi-RNN)和门控循环单元(GRU)的特性,用于处理时序数据和序列建模任务。

在传统的循环神经网络(RNN)中,信息只能按时间顺序流动,无法同时考虑过去和未来的上下文信息。为了解决这个问题,BIGRU引入了双向循环神经网络的思想。它包含两个独立的RNN,一个按时间顺序处理输入序列,另一个按时间逆序处理输入序列。这样一来,BIGRU能够同时获取过去和未来的信息,更好地捕捉序列中的长期依赖关系。

另外,BIGRU使用了门控循环单元(GRU)作为其基本单元。GRU是一种比较简化的门控循环单元模型,类似于长短时记忆网络(LSTM),但参数量更少,计算成本更低。GRU通过门控机制来控制信息的流动,包括更新门、重置门和候选值,从而有效地解决了梯度消失和梯度爆炸的问题,并且能够更好地捕捉时序数据中的模式和规律。

BIGRU神经网络在时序数据处理和序列建模任务中具有广泛的应用。它可用于股票价格预测、天气预测、语音识别、机器翻译等任务,能够学习序列中的模式和规律,并通过双向结构和门控机制更准确地预测未来的数据。

总之,BIGRU神经网络是一种结合了双向循环神经网络和门控循环单元的模型,用于处理时序数据和序列建模任务,能够更好地捕捉序列中的长期依赖关系和重要模式,具有较好的性能和效果。

在matlab中BIGRU网络结构的搭建如下:

c 复制代码
%%	构建BIGRU
	bigru = layerGraph();
	
    bigru = addLayers(bigru,[
	sequenceInputLayer(inputSize,"Name","input")
	gruLayer(numhidden_units,'OutputMode','sequence',"Name","gru1")
	concatenationLayer(1, 2, "Name", "cat1")
    reluLayer('name','relu')
	fullyConnectedLayer(outputSize) %全连接层输出维度设置
	regressionLayer('name','out')
    ]);
	
	bigru =addLayers(bigru,[
	FlipLayer("flip1")
	gruLayer(numhidden_units,'OutputMode',"sequence","Name","gru2")
	FlipLayer("flip2")]);

    bigru = connectLayers(bigru, "flip2", "cat1/in2");
	bigru = connectLayers(bigru, "input", "flip1");

网络结构:

训练进度:

训练集结果:

测试集结果:

评价指标:

完整代码获取:BIGRU时序预测代码

相关推荐
硅谷秋水4 小时前
RoboBrain 2.5:视野中的深度,思维中的时间
深度学习·机器学习·计算机视觉·语言模型·机器人
zhangfeng11334 小时前
Warmup Scheduler深度学习训练中,在训练初期使用较低学习率进行预热(Warmup),然后再按照预定策略(如余弦退火、阶梯下降等)衰减学习率的方法
人工智能·深度学习·学习
沃达德软件4 小时前
电信诈骗预警平台功能解析
大数据·数据仓库·人工智能·深度学习·机器学习·数据库开发
青铜弟弟5 小时前
基于物理的深度学习模型
人工智能·深度学习
向量引擎小橙5 小时前
视觉艺术的“奇点”:深度拆解 Gemini-3-Pro-Image-Preview 绘画模型,看这只“香蕉”如何重塑 AI 创作逻辑!
人工智能·python·gpt·深度学习·llama
byzh_rc6 小时前
[深度学习网络从入门到入土] 网络中的网络NiN
网络·人工智能·深度学习
Piar1231sdafa8 小时前
深度学习目标检测算法之YOLOv26加拿大鹅检测
深度学习·算法·目标检测
晨非辰8 小时前
【数据结构入坑指南(三.1)】--《面试必看:单链表与顺序表之争,读懂“不连续”之美背后的算法思想》
数据结构·c++·人工智能·深度学习·算法·机器学习·面试
肾透侧视攻城狮10 小时前
《掌握 tf.data API:从 Dataset 创建、map/batch/shuffle 操作到预取/缓存优化的完整实战》
人工智能·深度学习·tensorflow·tf.data api·dataset 对象·map/batch/shuff·预取/并行化/缓存机制
A尘埃10 小时前
深度学习框架:Keras
人工智能·深度学习·keras