【PyTorch笔记 04】F.cross_entropy的使用

torch.nn.functional.cross_entropy是PyTorch中用于计算交叉熵损失的函数,非常适合用于多分类问题。这个函数结合了log_softmax操作和nll_loss(负对数似然损失)的计算,因此输入得分(即模型输出)不需要事先经过softmax处理。

下面是一个使用torch.nn.functional.cross_entropy的示例,展示了如何在一个简单的神经网络模型中应用它来计算损失:

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

# 假设我们有一个简单的模型
class SimpleModel(nn.Module):
    def __init__(self, input_size, num_classes):
        super(SimpleModel, self).__init__()
        self.linear = nn.Linear(input_size, num_classes)
    
    def forward(self, x):
        return self.linear(x)

# 创建模型实例
model = SimpleModel(input_size=10, num_classes=3)

# 模拟一批输入数据和标签
inputs = torch.randn(5, 10)  # 假设批大小为5,输入特征大小为10
labels = torch.tensor([0, 2, 1, 0, 2])  # 真实标签

# 模型前向传播
outputs = model(inputs)

# 计算交叉熵损失
# outputs: torch.Size([5, 3])
# labels: torch.Size([5]), 注意这个参数必须为long型的
loss = F.cross_entropy(outputs, labels)

print("Loss:", loss.item())

在这个示例中:

  • SimpleModel是一个简单的线性模型,其输出大小等于类别数。
  • 我们创建了一批输入inputs和对应的标签labels
  • 模型的输出outputs是直接传递给F.cross_entropy的,不需要额外的softmax层,因为cross_entropy内部已经处理了这部分。
  • labels应该是每个样本的类别索引形式,而不是one-hot编码。
  • F.cross_entropy计算了从模型输出到真实标签的交叉熵损失。

这种方式使得实现多分类问题的模型训练变得简单而直接。

相关推荐
老蒋新思维8 分钟前
创客匠人峰会实录:创始人 IP 变现的 “人 + 智能体” 协同范式 —— 打破知识变现的能力边界
大数据·网络·人工智能·网络协议·tcp/ip·创始人ip·创客匠人
_codemonster8 分钟前
深度学习实战(基于pytroch)系列(四十八)AdaGrad优化算法
人工智能·深度学习·算法
老王熬夜敲代码13 分钟前
C++中的thread
c++·笔记·面试
AI即插即用28 分钟前
即插即用系列 | Attention GhostUNet++:基于多维注意力和 Ghost 模块的高效 CT 图像脂肪与肝脏分割网络
网络·图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
猎人everest1 小时前
LangChain 与其他大语言模型框架有什么区别
人工智能·语言模型·langchain
崇山峻岭之间1 小时前
C++ Prime Plus 学习笔记033
c++·笔记·学习
jkyy20141 小时前
端到端生态闭环:智能硬件+云平台+应用终端,最大化穿戴设备价值
大数据·人工智能·物联网·健康医疗
暗然而日章1 小时前
C++基础:Stanford CS106L学习笔记 7 类
c++·笔记·学习
思成不止于此1 小时前
【MySQL 零基础入门】DDL 核心语法全解析:数据库与表结构操作篇
数据库·笔记·学习·mysql