【PyTorch笔记 04】F.cross_entropy的使用

torch.nn.functional.cross_entropy是PyTorch中用于计算交叉熵损失的函数,非常适合用于多分类问题。这个函数结合了log_softmax操作和nll_loss(负对数似然损失)的计算,因此输入得分(即模型输出)不需要事先经过softmax处理。

下面是一个使用torch.nn.functional.cross_entropy的示例,展示了如何在一个简单的神经网络模型中应用它来计算损失:

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

# 假设我们有一个简单的模型
class SimpleModel(nn.Module):
    def __init__(self, input_size, num_classes):
        super(SimpleModel, self).__init__()
        self.linear = nn.Linear(input_size, num_classes)
    
    def forward(self, x):
        return self.linear(x)

# 创建模型实例
model = SimpleModel(input_size=10, num_classes=3)

# 模拟一批输入数据和标签
inputs = torch.randn(5, 10)  # 假设批大小为5,输入特征大小为10
labels = torch.tensor([0, 2, 1, 0, 2])  # 真实标签

# 模型前向传播
outputs = model(inputs)

# 计算交叉熵损失
# outputs: torch.Size([5, 3])
# labels: torch.Size([5]), 注意这个参数必须为long型的
loss = F.cross_entropy(outputs, labels)

print("Loss:", loss.item())

在这个示例中:

  • SimpleModel是一个简单的线性模型,其输出大小等于类别数。
  • 我们创建了一批输入inputs和对应的标签labels
  • 模型的输出outputs是直接传递给F.cross_entropy的,不需要额外的softmax层,因为cross_entropy内部已经处理了这部分。
  • labels应该是每个样本的类别索引形式,而不是one-hot编码。
  • F.cross_entropy计算了从模型输出到真实标签的交叉熵损失。

这种方式使得实现多分类问题的模型训练变得简单而直接。

相关推荐
_山止川行14 分钟前
生活
人工智能
是Dream呀19 分钟前
昇腾实战 | 昇腾 NPU 异构编程与 GEMM 调优核心方法
人工智能·华为·cann
JobDocLS21 分钟前
深度学习软件安装
人工智能·深度学习
新智元22 分钟前
2027 年,人类最后一次抉择
人工智能·openai
新智元24 分钟前
DeepSeek V3.2 爆火,Agentic 性能暴涨 40% 解密
人工智能·aigc
多云的夏天27 分钟前
AI-工具使用总结-2025-12
人工智能
哇咔咔_sky34 分钟前
SpeakBot 用自然语言控制机器人 — 说话,它就动。Python+React Native
人工智能
机器之心37 分钟前
从MiniMax到DeepSeek:为何头部大模型都在押注「交错思维」?
人工智能·openai
机器之心39 分钟前
DeepSeek-V3.2巨「吃」Token,竟然是被GRPO背刺了
人工智能·openai
机器之心41 分钟前
云计算一哥出手,大家AI Agent自由了
人工智能·openai