【PyTorch笔记 04】F.cross_entropy的使用

torch.nn.functional.cross_entropy是PyTorch中用于计算交叉熵损失的函数,非常适合用于多分类问题。这个函数结合了log_softmax操作和nll_loss(负对数似然损失)的计算,因此输入得分(即模型输出)不需要事先经过softmax处理。

下面是一个使用torch.nn.functional.cross_entropy的示例,展示了如何在一个简单的神经网络模型中应用它来计算损失:

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

# 假设我们有一个简单的模型
class SimpleModel(nn.Module):
    def __init__(self, input_size, num_classes):
        super(SimpleModel, self).__init__()
        self.linear = nn.Linear(input_size, num_classes)
    
    def forward(self, x):
        return self.linear(x)

# 创建模型实例
model = SimpleModel(input_size=10, num_classes=3)

# 模拟一批输入数据和标签
inputs = torch.randn(5, 10)  # 假设批大小为5,输入特征大小为10
labels = torch.tensor([0, 2, 1, 0, 2])  # 真实标签

# 模型前向传播
outputs = model(inputs)

# 计算交叉熵损失
# outputs: torch.Size([5, 3])
# labels: torch.Size([5]), 注意这个参数必须为long型的
loss = F.cross_entropy(outputs, labels)

print("Loss:", loss.item())

在这个示例中:

  • SimpleModel是一个简单的线性模型,其输出大小等于类别数。
  • 我们创建了一批输入inputs和对应的标签labels
  • 模型的输出outputs是直接传递给F.cross_entropy的,不需要额外的softmax层,因为cross_entropy内部已经处理了这部分。
  • labels应该是每个样本的类别索引形式,而不是one-hot编码。
  • F.cross_entropy计算了从模型输出到真实标签的交叉熵损失。

这种方式使得实现多分类问题的模型训练变得简单而直接。

相关推荐
whitelbwwww5 分钟前
Python图像处理入门指南--opencv
人工智能·opencv·计算机视觉
Peter114671785013 分钟前
华中科技大学研究生课程《数字图像处理I》期末考试(2025-回忆版/电子信息与通信学院)
图像处理·人工智能·计算机视觉
liteblue20 分钟前
DEB包解包与打包笔记
linux·笔记
颜颜yan_23 分钟前
在openEuler上搞个云原生AI模型商店:像点外卖一样部署模型
人工智能·云原生
lomocode34 分钟前
Dify 自建部署完全指南:从上手到放弃到真香
人工智能
崇山峻岭之间1 小时前
C++ Prime Plus 学习笔记027
c++·笔记·学习
aaaa_a1331 小时前
李宏毅——self-attention Transformer
人工智能·深度学习·transformer
IMPYLH2 小时前
Lua 的 tonumber 函数
开发语言·笔记·后端·junit·游戏引擎·lua
Coovally AI模型快速验证2 小时前
MAR-YOLOv9:革新农业检测,YOLOv9的“低调”逆袭
人工智能·神经网络·yolo·计算机视觉·cnn
云和数据.ChenGuang2 小时前
AI运维工程师技术教程之Linux环境下部署Deepseek
linux·运维·人工智能