【PyTorch笔记 04】F.cross_entropy的使用

torch.nn.functional.cross_entropy是PyTorch中用于计算交叉熵损失的函数,非常适合用于多分类问题。这个函数结合了log_softmax操作和nll_loss(负对数似然损失)的计算,因此输入得分(即模型输出)不需要事先经过softmax处理。

下面是一个使用torch.nn.functional.cross_entropy的示例,展示了如何在一个简单的神经网络模型中应用它来计算损失:

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

# 假设我们有一个简单的模型
class SimpleModel(nn.Module):
    def __init__(self, input_size, num_classes):
        super(SimpleModel, self).__init__()
        self.linear = nn.Linear(input_size, num_classes)
    
    def forward(self, x):
        return self.linear(x)

# 创建模型实例
model = SimpleModel(input_size=10, num_classes=3)

# 模拟一批输入数据和标签
inputs = torch.randn(5, 10)  # 假设批大小为5,输入特征大小为10
labels = torch.tensor([0, 2, 1, 0, 2])  # 真实标签

# 模型前向传播
outputs = model(inputs)

# 计算交叉熵损失
# outputs: torch.Size([5, 3])
# labels: torch.Size([5]), 注意这个参数必须为long型的
loss = F.cross_entropy(outputs, labels)

print("Loss:", loss.item())

在这个示例中:

  • SimpleModel是一个简单的线性模型,其输出大小等于类别数。
  • 我们创建了一批输入inputs和对应的标签labels
  • 模型的输出outputs是直接传递给F.cross_entropy的,不需要额外的softmax层,因为cross_entropy内部已经处理了这部分。
  • labels应该是每个样本的类别索引形式,而不是one-hot编码。
  • F.cross_entropy计算了从模型输出到真实标签的交叉熵损失。

这种方式使得实现多分类问题的模型训练变得简单而直接。

相关推荐
Blossom.1182 小时前
使用Python实现简单的人工智能聊天机器人
开发语言·人工智能·python·低代码·数据挖掘·机器人·云计算
科技小E2 小时前
EasyRTC嵌入式音视频通信SDK打造带屏IPC全场景实时通信解决方案
人工智能·音视频
ayiya_Oese2 小时前
[模型部署] 3. 性能优化
人工智能·python·深度学习·神经网络·机器学习·性能优化
愚戏师2 小时前
Linux复习笔记(六)shell编程
linux·笔记·shell
仙人掌_lz2 小时前
机器学习与人工智能:NLP分词与文本相似度分析
人工智能·机器学习·自然语言处理
jndingxin2 小时前
OpenCV CUDA模块中矩阵操作------归一化与变换操作
人工智能·opencv
ZStack开发者社区2 小时前
云轴科技ZStack官网上线Support AI,智能助手助力高效技术支持
人工智能·科技
每天都要写算法(努力版)2 小时前
【神经网络与深度学习】通俗易懂的介绍非凸优化问题、梯度消失、梯度爆炸、模型的收敛、模型的发散
人工智能·深度学习·神经网络
Blossom.1182 小时前
Web3.0:互联网的去中心化未来
人工智能·驱动开发·深度学习·web3·去中心化·区块链·交互
kyle~2 小时前
计算机视觉---目标检测(Object Detecting)概览
人工智能·目标检测·计算机视觉