【PyTorch笔记 04】F.cross_entropy的使用

torch.nn.functional.cross_entropy是PyTorch中用于计算交叉熵损失的函数,非常适合用于多分类问题。这个函数结合了log_softmax操作和nll_loss(负对数似然损失)的计算,因此输入得分(即模型输出)不需要事先经过softmax处理。

下面是一个使用torch.nn.functional.cross_entropy的示例,展示了如何在一个简单的神经网络模型中应用它来计算损失:

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

# 假设我们有一个简单的模型
class SimpleModel(nn.Module):
    def __init__(self, input_size, num_classes):
        super(SimpleModel, self).__init__()
        self.linear = nn.Linear(input_size, num_classes)
    
    def forward(self, x):
        return self.linear(x)

# 创建模型实例
model = SimpleModel(input_size=10, num_classes=3)

# 模拟一批输入数据和标签
inputs = torch.randn(5, 10)  # 假设批大小为5,输入特征大小为10
labels = torch.tensor([0, 2, 1, 0, 2])  # 真实标签

# 模型前向传播
outputs = model(inputs)

# 计算交叉熵损失
# outputs: torch.Size([5, 3])
# labels: torch.Size([5]), 注意这个参数必须为long型的
loss = F.cross_entropy(outputs, labels)

print("Loss:", loss.item())

在这个示例中:

  • SimpleModel是一个简单的线性模型,其输出大小等于类别数。
  • 我们创建了一批输入inputs和对应的标签labels
  • 模型的输出outputs是直接传递给F.cross_entropy的,不需要额外的softmax层,因为cross_entropy内部已经处理了这部分。
  • labels应该是每个样本的类别索引形式,而不是one-hot编码。
  • F.cross_entropy计算了从模型输出到真实标签的交叉熵损失。

这种方式使得实现多分类问题的模型训练变得简单而直接。

相关推荐
WZGL123018 小时前
智能机器人:当养老遇上科技,温暖与风险并存的新时代
人工智能·科技·机器人
浮生醉清风i18 小时前
Spring Ai
java·人工智能·spring
AC赳赳老秦18 小时前
跨境科技服务的基石:DeepSeek赋能多语言技术文档与合规性说明的深度实践
android·大数据·数据库·人工智能·科技·deepseek·跨境
绿算技术18 小时前
重塑智算存储范式:绿算技术NVMe-oF芯片解决方案全景剖析
人工智能·算法·gpu算力
jrlong18 小时前
DataWhale大模型基础与量化微调task4学习笔记(第 1章:参数高效微调_LoRA 方法详解)
笔记·学习
方安乐18 小时前
react笔记之useMemo
前端·笔记·react.js
卡布叻_星星18 小时前
后端笔记之Maven配置以及解决Maven中央仓库没有的依赖
笔记
Jackchenyj18 小时前
基于艾宾浩斯记忆曲线的AI工具实战:ShiflowAI助力高效知识沉淀
人工智能·笔记·信息可视化·智能体
傻小胖18 小时前
5.BTC-实现-北大肖臻老师客堂笔记
笔记·区块链
东方轧线18 小时前
给 AI 安装高速缓存:实战 MCP 对接 Redis,实现热点数据的毫秒级读取与状态共享
数据库·人工智能·redis