基于EKF扩展卡尔曼滤波的传感器网络目标跟踪matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

复制代码
.....................................................................

% 定义初始位置的均值和标准差  
Xreal0 = [-0.5; 0];
sgm0   = sqrt(0.05);
% 初始化估计位置,加入随机噪声 
XNreal0= Xreal0 + sgm0 * randn(2, 1); % posicion inicial estimada
% 初始化估计位置矩阵  
Xst    = zeros(2, MTKL);
Xst(:, 1) = XNreal0; 
% 初始化位置协方差矩阵  
P_t       = sgm0^2 * eye(size(Xst, 1)); 
% 定义u的协方差矩阵 
Q         = 0; 
% 定义测量噪声的协方差矩阵  
R         = sgm^2 * eye(size(Pxy, 2));  
% 初始化f向量 
f         = zeros(size(Pxy, 2), 1);
% Kalman 滤波循环  
for t = 2 : MTKL 
    % 预测步骤  
    Xst1 = A * Xst(:, t - 1) + u;  % 预测位置
    Pst1 = Q + A * P_t * A';% 预测协方差  
    
    % 更新步骤
    J   = func_jacob(Xst1, Pxy);% 计算雅可比矩阵  
    K_t = Pst1 * J'/(J * Pst1 * J' + R);    % 计算Kalman增益 
    for i = 1 : length(f)
        f(i) = exp(-0.5 * norm(Xst1 - Pxy(:, i))^2);% 计算预测的测量值  
    end
    % 更新估计位置  
    Xst(:, t) = Xst1 + K_t * (Yr(:, t) - f);
    % 更新协方差
    P_t       = Pst1 - K_t * (J * Pst1 * J') * K_t';
end
err= mean2(abs(Xr0-Xst))


% 绘制传感器位置、真实轨迹和估计轨迹 
figure
plot(Pos1(1), Pos1(2), 'ro', 'LineWidth', 2);
hold on
plot(Pos2(1), Pos2(2), 'go', 'LineWidth', 2);
hold on
plot(Pos3(1), Pos3(2), 'yo', 'LineWidth', 2);
hold on
plot(Pos4(1), Pos4(2), 'co', 'LineWidth', 2);
hold on
plot(Xr0(1, :), Xr0(2, :), 'b', 'LineWidth', 2);
hold on
plot(Xst(1, :), Xst(2, :), 'm.', 'LineWidth', 1);
xlabel('{\itx}_{1}'), 
ylabel('{\itx}_{2}');

legend('传感器1', '传感器2', '传感器3', '传感器4', '真实数据', '估计数据');
grid;

save R1.mat err
109

4.算法理论概述

随着传感器网络技术的不断发展,目标跟踪作为其核心应用之一,在军事、民用等领域中得到了广泛的关注。扩展卡尔曼滤波(EKF)作为一种有效的非线性滤波方法,被广泛应用于传感器网络的目标跟踪中。

传感器网络是由分布在空间中的多个传感器节点组成,这些节点通过无线通信方式相互连接,共同协作完成对环境信息的感知、处理和传输。目标跟踪是指利用传感器网络获取的目标状态信息(如位置、速度等),通过一定的算法估计目标的运动状态,并实现对目标未来运动状态的预测。

在传感器网络目标跟踪中,由于传感器节点的观测数据通常受到噪声干扰和非线性因素的影响,因此需要采用有效的滤波算法对观测数据进行处理,以提高目标跟踪的精度和鲁棒性。扩展卡尔曼滤波(EKF)正是一种适用于非线性系统的滤波方法,它通过对非线性系统进行线性化近似处理,再利用标准卡尔曼滤波框架进行状态估计和预测。

扩展卡尔曼滤波是一种处理非线性系统状态估计的方法,它通过线性化非线性过程和测量模型,在每次迭代中利用高斯分布的性质进行最优估计。

在多传感器网络环境下,每个传感器可能提供关于目标的不同视角或不同属性的观测数据。每个传感器节点都独立运行一个EKF,然后通过数据融合技术(如卡尔曼融合或分布式卡尔曼滤波)整合所有传感器的信息来获取更准确的目标状态估计。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
亚马逊云开发者2 分钟前
GenDev 智能开发:Amazon Q Developer CLI 赋能Amazon Code Family实现代码审核
人工智能
weixin_3776348410 分钟前
【强化学习】RLMT强制 CoT提升训练效果
人工智能·算法·机器学习
Francek Chen18 分钟前
【深度学习计算机视觉】14:实战Kaggle比赛:狗的品种识别(ImageNet Dogs)
人工智能·pytorch·深度学习·计算机视觉·kaggle·imagenet dogs
dxnb2221 分钟前
Datawhale25年10月组队学习:math for AI+Task3线性代数(下)
人工智能·学习·线性代数
渡我白衣38 分钟前
《未来的 AI 操作系统(四)——AgentOS 的内核设计:调度、记忆与自我反思机制》
人工智能·深度学习·机器学习·语言模型·数据挖掘·人机交互·语音识别
kaikaile19951 小时前
MATLAB实现自适应卡尔曼滤波(AKF)
开发语言·matlab
飞哥数智坊1 小时前
Claude Skills 实测体验:不用翻墙,GLM-4.6 也能玩转
人工智能·claude·chatglm (智谱)
cici158741 小时前
基于MATLAB的ADS-B接收机卫星与接收天线初始化实现
算法·matlab
FreeBuf_1 小时前
微软数字防御报告:AI成为新型威胁,自动化漏洞利用技术颠覆传统
人工智能·microsoft·自动化
IT_陈寒1 小时前
Vue3性能优化实战:这7个技巧让我的应用加载速度提升50%!
前端·人工智能·后端