GPT 的基础 - T(Transformer)

我们知道GPT的含义是:

Generative - 生成下一个词

Pre-trained - 文本预训练

Transformer - 基于Transformer架构

我们看到Transformer模型是GPT的基础,这篇博客梳理了一下Transformer的知识点。


  • BERT: 用于语言理解。(Transformer的Encoder)
  • GPT: 用于语言生成。(Transformer的Decoder)

GPT也是在BERT的基础上发展起来的,只是OpenAI和google、百度走了不同的路线。


Transformer本质上提出了一种基于注意力机制的encoder-decoder框架或架构。这个架构中的主要组件,如多头注意力机制、位置编码、残差连接以及前馈神经网络都是通用的构建块。


Transformer对比RNN或者LSTM有这些优点:

  1. 并行计算
  2. 长期依赖学习
  3. 训练更稳定
  4. 更少的参数
  5. 无需标定的输入输出

Transformer主要缺点如下:

  1. Transformer无法很好地建模周期时间序列。
  2. Transformer可能不适合较短序列。
  3. 计算复杂度较高。
  4. 缺乏韵律和时域信息。

Encoder的组成:

  • Inputs - 输入分词层(Tokenize)
  • Input Token Embedding 输入词向量嵌入化(WordEmbedding)
  • Transformer Block 中间Encoder层可以简单把这个盒子理解为一个Block ,整 Transformer Block中可以在分解为四层:
    • self-attention layer 自注意力计算层
    • normalization layer 归一化层
    • feed forward layer 前馈层
    • anothernormalization layer 另一个归一化层

Decoder和Encoder唯一的区别就是多了一个Encode-Decode注意力层,然后最后一层接了个linear+softmax层,损失函数就是交叉熵损失。


  • Self-Attention 计算过程

第一个过程是根据Query和Key计算权重系数,第二个过程根据权重系数对Value进行加权求和。

  • 多头-Attention的计算

把multi-headed输出的不同的z,组合成最终想要的输出的z,这就是multi-headed Attention要做的一个额外的步骤。


相关推荐
byzy3 小时前
【论文笔记】SpaRC: Sparse Radar-Camera Fusion for 3D Object Detection
论文阅读·深度学习·目标检测·计算机视觉·自动驾驶
闲人编程4 小时前
图像去雾算法:从物理模型到深度学习实现
图像处理·人工智能·python·深度学习·算法·计算机视觉·去雾
咔咔学姐kk4 小时前
大模型微调技术宝典:Transformer架构,从小白到专家
人工智能·深度学习·学习·算法·transformer
Caaacy_YU5 小时前
多模态大模型研究每日简报【2025-09-10】
论文阅读·人工智能·深度学习·机器学习·计算机视觉
人有一心5 小时前
深度学习里的树模型TabNet
人工智能·深度学习
强盛小灵通专卖员6 小时前
边缘计算设备NPU的加速原理
人工智能·深度学习·边缘计算·sci·中文核心·小论文
强盛小灵通专卖员6 小时前
RK3576边缘计算设备部署YOLOv11
人工智能·深度学习·yolo·边缘计算·sci·rk3576·小论文
Ms_Big6 小时前
ppliteseg改rknn,部署在嵌入式板,加速模型
人工智能·python·深度学习
edisao6 小时前
[特殊字符] 从助手到引擎:基于 GPT 的战略协作系统演示
大数据·人工智能·gpt
七牛云行业应用10 小时前
图灵奖得主萨顿演讲解读:深度学习的局限与AI新范式
人工智能·深度学习