GPT 的基础 - T(Transformer)

我们知道GPT的含义是:

Generative - 生成下一个词

Pre-trained - 文本预训练

Transformer - 基于Transformer架构

我们看到Transformer模型是GPT的基础,这篇博客梳理了一下Transformer的知识点。


  • BERT: 用于语言理解。(Transformer的Encoder)
  • GPT: 用于语言生成。(Transformer的Decoder)

GPT也是在BERT的基础上发展起来的,只是OpenAI和google、百度走了不同的路线。


Transformer本质上提出了一种基于注意力机制的encoder-decoder框架或架构。这个架构中的主要组件,如多头注意力机制、位置编码、残差连接以及前馈神经网络都是通用的构建块。


Transformer对比RNN或者LSTM有这些优点:

  1. 并行计算
  2. 长期依赖学习
  3. 训练更稳定
  4. 更少的参数
  5. 无需标定的输入输出

Transformer主要缺点如下:

  1. Transformer无法很好地建模周期时间序列。
  2. Transformer可能不适合较短序列。
  3. 计算复杂度较高。
  4. 缺乏韵律和时域信息。

Encoder的组成:

  • Inputs - 输入分词层(Tokenize)
  • Input Token Embedding 输入词向量嵌入化(WordEmbedding)
  • Transformer Block 中间Encoder层可以简单把这个盒子理解为一个Block ,整 Transformer Block中可以在分解为四层:
    • self-attention layer 自注意力计算层
    • normalization layer 归一化层
    • feed forward layer 前馈层
    • anothernormalization layer 另一个归一化层

Decoder和Encoder唯一的区别就是多了一个Encode-Decode注意力层,然后最后一层接了个linear+softmax层,损失函数就是交叉熵损失。


  • Self-Attention 计算过程

第一个过程是根据Query和Key计算权重系数,第二个过程根据权重系数对Value进行加权求和。

  • 多头-Attention的计算

把multi-headed输出的不同的z,组合成最终想要的输出的z,这就是multi-headed Attention要做的一个额外的步骤。


相关推荐
浩浩的代码花园3 小时前
自研端侧推理模型实测效果展示
android·深度学习·计算机视觉·端智能
晨非辰3 小时前
C++ 波澜壮阔 40 年:从基础I/O到函数重载与引用的完整构建
运维·c++·人工智能·后端·python·深度学习·c++40周年
这张生成的图像能检测吗6 小时前
(论文速读)EfficientTrain++: 高效视觉骨干训练的通用课程学习
人工智能·深度学习·计算机视觉·训练方法
编程小白_正在努力中16 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海16 小时前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
H***997618 小时前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习
FL162386312920 小时前
无人机视角航拍河道漂浮物垃圾识别分割数据集labelme格式256张1类别
深度学习
audyxiao00121 小时前
期刊研究热点扫描|一文了解计算机视觉顶刊TIP的研究热点
人工智能·计算机视觉·transformer·图像分割·多模态
青瓷程序设计1 天前
昆虫识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
小殊小殊1 天前
DeepSeek为什么这么慢?
人工智能·深度学习