【Langchain多Agent实践】一个有推销功能的旅游聊天机器人

【Langchain+Streamlit】旅游聊天机器人_langchain streamlit-CSDN博客

视频讲解地址:【Langchain Agent】带推销功能的旅游聊天机器人_哔哩哔哩_bilibili

体验地址: http://101.33.225.241:8503/

github地址:GitHub - jerry1900/langchain_chatbot: langchain+streamlit打造的一个有memory的旅游聊天机器人,可以和你聊旅游相关的事儿

之前,我们介绍如何打算一款简单的旅游聊天机器人,而且之前我们介绍了SalesGPT,我们看能不能把这两个东西结合起来,让我们的旅游聊天机器人具有推销产品的功能。我们先来看看效果:

首先,你可以和机器人闲聊关于旅游的事儿(如果你问的问题和旅游无关的话,会提示你只回答旅游问题) ;其次,当你连续询问有关同一个地点时(比如北京),机器人会检查自己的本地知识库,看看产品库里有没有相关的旅游产品,如果有的话就推荐给客户,如果没有就输出一个空的字符串,用户是没有感知的,我们来看一下是如何实现的。

1. 项目结构

我们是在原来项目基础上逐步叠加的,主要增加了一个agent.py、my_tools.py、stages.py等文件。我们这次的项目是使用poetry来管理和运行的:

项目结构如图:

我们新加了一个产品文件用于存储旅游产品,下面是三个产品中的一个:

复制代码
产品名称:北京一日游
产品价格:299元
产品内容:{
北京作为中国的首都和历史文化名城,有许多令人着迷的景点和活动。以下是一个充满活力和文化的北京一日游的建议:
早上:天安门广场: 开始您的一日游,您可以前往天安门广场,这是世界上最大的城市广场之一,也是中国的政治中心。您可以欣赏到天安门城楼,参观升国旗仪式(早上升旗时间)。
故宫博物院: 天安门广场北侧就是故宫,这是中国最大、最完整的古代皇家宫殿建筑群。在这里,您可以领略中国古代皇家建筑的壮丽和深厚的历史文化。
中午:午餐: 您可以选择在附近的餐馆品尝地道的北京菜,比如炸酱面、北京烤鸭等。
下午:颐和园: 中午过后,您可以前往颐和园,这是中国最大的皇家园林之一,也是清代的皇家园林。园内有美丽的湖泊、精致的建筑和独特的风景。
什刹海: 在下午的最后时段,您可以前往什刹海地区,这里是一个古老而又时尚的区域,有着许多酒吧、咖啡馆和特色小店。您可以漫步在湖边,欣赏夕阳下的美景,体验北京的悠闲氛围。
晚上:王府井步行街: 晚上,您可以前往王府井步行街,这是北京最繁华的购物街之一,有着各种商店、餐馆和娱乐场所。您可以尝试美食、购物或者观赏街头表演。
京剧表演: 如果时间允许,您还可以观看一场京剧表演,京剧是中国传统戏曲的代表之一,有着悠久的历史和独特的艺术魅力。
}

2. chat.py的改动,新增了欢迎词,添加了Agent构造的方法

这里构造一个专门负责提示词的Agent(其实就是一个LLMChain),并构造一个负责会话和判断功能的ConversationAgent,让这个agent初始化并构造一个负责判断阶段的内部agent,我们把他们都要放到session里:

#需要国内openai开发账号的请联系微信 15652965525

if "welcome_word" not in st.session_state:
    st.session_state.welcome_word = welcome_agent()
    st.session_state.messages.append({'role': 'assistant', 'content': st.session_state.welcome_word['text']})
    st.session_state.agent = ConversationAgent()
    st.session_state.agent.seed_agent()
    st.session_state.agent.generate_stage_analyzer(verbose=True)

在用户输入后的每一步,先进行一下阶段判断,然后调用agent的human_step方法,再调用agent的step()方法,完成一轮对话:

    st.session_state.agent.determine_conversation_stage(prompt)
    st.session_state.agent.human_step(prompt)
    response = st.session_state.agent.step()

3. welcome_agent

这个比较简单,就是一个咱们学习过无数遍的一个简单的chain:

def welcome_agent():
    llm = OpenAI(
        temperature=0.6,
        # openai_api_key=os.getenv("OPENAI_API_KEY"),
        openai_api_key=st.secrets['api']['key'],
        # base_url=os.getenv("OPENAI_BASE_URL")
        base_url=st.secrets['api']['base_url']
    )

    prompt = PromptTemplate.from_template(WELCOME_TEMPLATE)

    chain = LLMChain(
        llm=llm,
        prompt=prompt,
        verbose=True,

    )

    response = chain.invoke("简短的欢迎词")

    return response

这里我们希望每次调用它的时候,可以得到一些不一样的、有创意的欢迎词,所以我们的temperature调的比较高,这样它可能生成一些有创意的欢迎词。

4. ConversationAgent类

这个类是我们的核心类,里面有很多属性和方法,我们用python的dir()方法来看一下它里面的结构:

from agent import ConversationAgent

agent = ConversationAgent()
print(dir(ConversationAgent))

里面以_开头的是Object基本类自带的属性和方法,其他的是我们构造的属性和方法:

['annotations', 'class', 'delattr', 'dict', 'dir', 'doc', 'eq', 'format', 'ge', 'getattribute', 'gt', 'hash', 'init', 'init_subclass', 'le', 'lt', 'module', 'ne', 'new', 'reduce', 'reduce_ex', 'repr', 'setattr', 'sizeof', 'str', 'subclasshook', 'weakref', '_respond_without_tools', 'conversation_agent_with_tool', 'conversation_agent_without_tool', 'conversation_history', 'conversation_stage_id', 'current_conversation_stage', 'determine_conversation_stage', 'fake_step', 'generate_stage_analyzer', 'get_tools', 'human_step', 'llm', 'recommend_product', 'retrieve_conversation_stage', 'seed_agent', 'show_chat_history', 'stage_analyzer_chain', 'step']

我们先来看类的属性和一些简单的方法,注意我们这里构造了一个llm,之后下面有很多方法会用到这个llm:

class ConversationAgent():
    stage_analyzer_chain: StageAnalyzerChain = Field(...)
    conversation_agent_without_tool = Field()
    conversation_agent_with_tool = Field()

    conversation_history = []
    conversation_stage_id: str = "1"
    current_conversation_stage: str = CONVERSATION_STAGES.get("1")

    llm = OpenAI(
            temperature=0,
            openai_api_key=st.secrets['api']['key'],
            base_url=st.secrets['api']['base_url']
         )

    def seed_agent(self):
        self.conversation_history.clear()
        print("------Seed Successful------")

    def show_chat_history(self):
        return self.conversation_history

    def retrieve_conversation_stage(self, key):
        return CONVERSATION_STAGES.get(key)

我们继续来看:

    def fake_step(self):
        input_text = self.conversation_history[-1]
        ai_message = self._respond_with_tools(str(input_text), verbose=True)
        print(ai_message,type(ai_message['output']))

    def step(self):
        input_text = self.conversation_history[-1]
        print(str(input_text)+'input_text****')

        if int(self.conversation_stage_id) == 1:
            ai_message = self._respond_without_tools(str(input_text),verbose=True)
        else:
            chat_message = self._respond_without_tools(str(input_text), verbose=True)
            recommend_message = self.recommend_product()
            print(recommend_message,len(recommend_message))
            if len(recommend_message)<=5:
                ai_message = chat_message
            else:
                ai_message = chat_message + '\n\n' + recommend_message
            # output_dic = self._respond_with_tools(str(input_text),verbose=True)
            # ai_message = str(output_dic['output'])

        print(ai_message,type(ai_message))

        ai_message = "AI:"+str(ai_message)
        self.conversation_history.append(ai_message)
        # print(f"------系统返回消息'{ai_message}',并添加到history里------")
        return ai_message.lstrip('AI:')

fake_step是一个模拟输出的方法,不用管,测试的时候用;step方法是接收用户的输入,从聊天记录里取出来(input_text = self.conversation_history[-1]) ,然后再根据不同的对话阶段进行不同的逻辑,如果是第二个阶段推销阶段,那么就调用recommend_product方法去生成一个推销产品的信息,并把两条信息拼接起来。

    def human_step(self,input_text):
        human_message = input_text
        human_message = "用户: " + human_message
        self.conversation_history.append(human_message)
        # print(f"------用户输入消息'{human_message}',并添加到history里------")
        return human_message

human_step方法比较简单,就是把用户的输入挂到conversation_history聊天记录里。然后是构造阶段判断的agent和阶段判断的方法,这些都是模仿SalesGPT里的,做了一些调整:

    def generate_stage_analyzer(self,verbose: bool = False):
        self.stage_analyzer_chain = StageAnalyzerChain.from_llm(
            llm=self.llm,
            verbose=verbose
        )

        print("成功构造一个StageAnalyzerChain")


    def determine_conversation_stage(self,question):
        self.question = question
        print('-----进入阶段判断方法-----')
        self.conversation_stage_id = self.stage_analyzer_chain.run(
            conversation_history=self.conversation_history,
            question=self.question
        )

        print(f"Conversation Stage ID: {self.conversation_stage_id}")
        print(type(self.conversation_stage_id))
        self.current_conversation_stage = self.retrieve_conversation_stage(
            self.conversation_stage_id
        )
        print(f"Conversation Stage: {self.current_conversation_stage}")

然后是_respond_without_tools这么一个内部的方法,它在step里被调用:

    def _respond_without_tools(self,input_text,verbose: bool = False):
        self.conversation_agent_without_tool = ConversationChain_Without_Tool.from_llm(
            llm=self.llm,
            verbose=verbose
        )

        response = self.conversation_agent_without_tool.run(
            question = input_text,
            conversation_history=self.conversation_history,
        )

        return response

最后是get_tools方法和recommend_product方法,这里也都是模仿了SalesGPT里的写法:

    def get_tools(self):
        file_path = r'C:\Users\Administrator\langchain_chatbot\product.txt'
        knowledge_base = build_knowledge_base(file_path)
        tools = get_tools(knowledge_base)
        return tools


    def recommend_product(self,verbose =True):

        tools = self.get_tools()

        prompt = CustomPromptTemplateForTools(
            template=RECOMMEND_TEMPLATE,
            tools_getter=lambda x: tools,
            # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically
            # This includes the `intermediate_steps` variable because that is needed
            input_variables=[
                "intermediate_steps",  # 这是在调用tools时,会产生的中间变量,是一个list里面的一个tuple,一个是action,一个是observation
                "conversation_history",
            ],
        )

        llm_chain = LLMChain(llm=self.llm, prompt=prompt, verbose=verbose)

        tool_names = [tool.name for tool in tools]

        # WARNING: this output parser is NOT reliable yet
        ## It makes assumptions about output from LLM which can break and throw an error
        output_parser = SalesConvoOutputParser()

        recommend_agent = LLMSingleActionAgent(
            llm_chain=llm_chain,
            output_parser=output_parser,
            stop=["\nObservation:"],
            allowed_tools=tool_names,

        )

        sales_agent_executor = AgentExecutor.from_agent_and_tools(
            agent=recommend_agent, tools=tools, verbose=verbose, max_iterations=5
        )

        inputs = {
            "conversation_history": "\n".join(self.conversation_history),
        }

        response = sales_agent_executor.invoke(inputs)

        return str(response['output'])

5. chain.py

chain这里有三个类,差异在于使用模板的不同还有部分传参的不同,这里写的有点冗余了,大家可以自己优化一下:

from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from template import STAGE_ANALYZER_INCEPTION_PROMPT,BASIC_TEMPLATE,RECOMMEND_TEMPLATE

class StageAnalyzerChain(LLMChain):
    """通过查看聊天记录判断是否要转向推荐和销售阶段."""

    @classmethod
    def from_llm(cls, llm, verbose: bool = True) -> LLMChain:
        """Get the response parser."""
        stage_analyzer_inception_prompt_template = STAGE_ANALYZER_INCEPTION_PROMPT
        prompt = PromptTemplate(
            template=stage_analyzer_inception_prompt_template,
            input_variables=[
                "conversation_history",
                "question"
            ],
        )
        return cls(prompt=prompt, llm=llm, verbose=verbose)

class ConversationChain_Without_Tool(LLMChain):
    #当用户没有明确的感兴趣话题时,用这个chain和用户闲聊
    @classmethod
    def from_llm(cls, llm, verbose: bool = True) -> LLMChain:
        """Get the response parser."""
        conversation_without_tools_template = BASIC_TEMPLATE
        prompt = PromptTemplate(
            template=conversation_without_tools_template,
            input_variables=[
                "conversation_history",
            ],
        )
        return cls(prompt=prompt, llm=llm, verbose=verbose)

class Recommend_Product(LLMChain):
    #当用户有明确的感兴趣话题时,用这个chain查询产品库,看是否命中,如果命中则生成一个产品推荐信息

    @classmethod
    def from_llm(cls, llm, verbose: bool = True) -> LLMChain:
        """Get the response parser."""
        conversation_without_tools_template = RECOMMEND_TEMPLATE
        prompt = PromptTemplate(
            template=conversation_without_tools_template,
            input_variables=[
                "conversation_history",
            ],
        )
        return cls(prompt=prompt, llm=llm, verbose=verbose)

6. my_tools.py

这个文件里有有很多,是我把SalesGPT里的一些文件改写拿过来用的,有一些根据实际项目需要进行的微调:

import re
from typing import Union

from langchain.agents import Tool
from langchain.chains import RetrievalQA
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from typing import Callable
from langchain.prompts.base import StringPromptTemplate
from langchain.agents.agent import AgentOutputParser
from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS
from langchain.schema import AgentAction, AgentFinish  # OutputParserException


def build_knowledge_base(filepath):
    with open(filepath, "r", encoding='utf-8') as f:
        product_catalog = f.read()

    text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=10)
    texts = text_splitter.split_text(product_catalog)

    llm = ChatOpenAI(temperature=0)
    embeddings = OpenAIEmbeddings()
    docsearch = Chroma.from_texts(
        texts, embeddings, collection_name="product-knowledge-base"
    )

    knowledge_base = RetrievalQA.from_chain_type(
        llm=llm, chain_type="stuff", retriever=docsearch.as_retriever()
    )

    return knowledge_base

def get_tools(knowledge_base):
    # we only use one tool for now, but this is highly extensible!
    tools = [
        Tool(
            name="ProductSearch",
            func=knowledge_base.invoke,
            description="查询产品库,输入应该是'请介绍一下**的旅游产品'",
        )
    ]
    print('tools构造正常')

    return tools

class CustomPromptTemplateForTools(StringPromptTemplate):
    # The template to use
    template: str

    tools_getter: Callable

    def format(self, **kwargs) -> str:
        # Get the intermediate steps (AgentAction, Observation tuples)
        # Format them in a particular way

        intermediate_steps = kwargs.pop("intermediate_steps")

        thoughts = ""

        for action, observation in intermediate_steps:
            thoughts += action.log
            thoughts += f"\nObservation: {observation}\nThought: "
        # Set the agent_scratchpad variable to that value

        print('------thoughts------:'+thoughts+'\n End of ------thoughts------')

        kwargs["agent_scratchpad"] = thoughts

        tools = self.tools_getter([])


        # Create a tools variable from the list of tools provided
        kwargs["tools"] = "\n".join(
            [f"{tool.name}: {tool.description}" for tool in tools]
        )
        # Create a list of tool names for the tools provided
        kwargs["tool_names"] = ", ".join([tool.name for tool in tools])

        print('prompt构造正常')

        return self.template.format(**kwargs)


class SalesConvoOutputParser(AgentOutputParser):
    ai_prefix: str = "AI"  # change for salesperson_name
    verbose: bool = True

    def get_format_instructions(self) -> str:
        return FORMAT_INSTRUCTIONS

    def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
        if self.verbose:
            print("TEXT")
            print(text)
            print("-------")

        if f"{self.ai_prefix}:" in text:
            if "Do I get the answer?YES." in text:
                print('判断Agent是否查到结果,yes')
                return AgentFinish(
                    {"output": text.split(f"{self.ai_prefix}:")[-1].strip()}, text)

            else:
                print('判断Agent是否查到结果,no')
                return AgentFinish({"output": {}}, text)


        regex = r"Action: (.*?)[\n]*Action Input: (.*)"
        match = re.search(regex, text)
        if not match:
            ## TODO - this is not entirely reliable, sometimes results in an error.
            return AgentFinish(
                {
                    "output": "I apologize, I was unable to find the answer to your question. Is there anything else I can help with?"
                },
                text,
            )
            # raise OutputParserException(f"Could not parse LLM output: `{text}`")
        action = match.group(1)
        action_input = match.group(2)

        print('output_paserser构造正常')
        return AgentAction(action.strip(), action_input.strip(" ").strip('"'), text)

    @property
    def _type(self) -> str:
        return "sales-agent"

7. 结束语

整个项目就是把之前的两个项目进行了一个组合拼装,在这个过程中可以更好地理解Sales

GPT这个项目,以及多Agent是怎么运行的。

相关推荐
WebCandy25 分钟前
EsChatPro 接入国内 DeepSeek 大模型
ai·aigc
s_yellowfish3 小时前
Linux服务器pm2 运行chatgpt-on-wechat,搭建微信群ai机器人
linux·服务器·chatgpt
南七澄江8 小时前
各种网站(学习资源及其他)
开发语言·网络·python·深度学习·学习·机器学习·ai
ai_lian_shuo10 小时前
四、使用langchain搭建RAG:金融问答机器人--构建web应用,问答链,带记忆功能
python·ai·金融·langchain·机器人
凳子花❀13 小时前
强化学习与深度学习以及相关芯片之间的区别
人工智能·深度学习·神经网络·ai·强化学习
kirito学长-Java1 天前
springboot/ssm七彩云南文化旅游网站Java代码编写web在线旅游景点管理
java·spring boot·旅游
米开朗基杨1 天前
Sealos Devbox 基础教程:使用 Cursor 从零开发一个代码猜古诗小游戏
ai·cursor·sealos·devbox
GitCode官方1 天前
GitCode 光引计划投稿|JavaVision:引领全能视觉智能识别新纪元
人工智能·ai·gitcode
weixin_446260851 天前
如何与AI对话,写好Prompt
人工智能·prompt
匹马夕阳1 天前
大模型(LLM)提示工程(Prompt Engineering)初识
人工智能·语言模型·prompt