【Educoder数据挖掘实训】异常值检测-箱线图

【Educoder数据挖掘实训】异常值检测-箱线图

开挖!

关于箱线图 ,核心理念就是找出上四分位数和下四分位数,定义二者的差为 I Q R IQR IQR。上下四分位数分别向上下扩展 1.5 I Q R 1.5IQR 1.5IQR定义为上界和下界,在此之外的数据被认为是异常数据。

这当然是合理的,关键在于四分位数如何求。

这是实训中给出的方法,这当然是错误 的。

四分位数是没有办法仅通过一条公式算出来的,肯定要分类讨论。由于是除以四所以分为 0.25 , 0.5 , 0.75 , 0 0.25,0.5,0.75,0 0.25,0.5,0.75,0四种情况。

靠哪边近哪边占据更大权重才是合理的,比如 0.25 0.25 0.25的情况下就有 Q i = 0.75 ⋅ x [ i ( l + 1 ) / / 4 ] + 0.25 ⋅ x [ i ( l + 1 ) / / 4 + 1 ] Q_i=0.75\cdot x[i(l+1)//4]+0.25\cdot x[i(l+1)//4+1] Qi=0.75⋅x[i(l+1)//4]+0.25⋅x[i(l+1)//4+1]。

其余三种情况同理。

但是分类讨论比较麻烦,我们可以借助quantile函数帮助我们直接求出上下四分位点。

求出分位点之后,我们理所当然知道了上限和下限。

此时我们可以借助 S e r i e s Series Series数据类型的特殊运算性质我们求出异常值 b o o l bool bool类型的 s e r i e s series series,然后将他取反后在原 s e r i e s series series中去除即可。

python 复制代码
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats
import numpy as np

data = pd.read_csv("src/death.csv", index_col='Unnamed: 0')

data = data.dropna(axis=1, thresh=data.shape[0] * 0.2)
data = data.dropna(axis=0, thresh=data.shape[1] * 0.2)

a = pd.isna(data).sum()
cols = [x for i, x in enumerate(a.index) if a[i] > 0]

mode_list = 'FIPS Admin2'
for i in cols:
    if mode_list.find(i) != -1:
        data[i] = data[i].fillna(data[i].mode().iloc[0])
    else:
        data[i] = data[i].fillna(data.mean()[i])


cols = '2008/10/20,2008/11/20,2008/12/20'.split(',')
x = data[cols]


########## Begin ########## 
Q1 = x.quantile(0.25)
Q3 = x.quantile(0.75)
IQR = Q3 - Q1

lower_limit = Q1 - 1.5 * IQR
upper_limit = Q3 + 1.5 * IQR

outliers_index = (x < lower_limit) | (x > upper_limit)
x_c1 = x[~outliers_index]
print(outliers_index.sum())

########## End ########## 
x_c1.boxplot()
plt.savefig(r'src/step1/ans_img')
plt.show()

解决问题的关键在于两点:

  1. 看预计输出知道最后需要输出的数据类型是一个 s e r i e s series series,后我们通过查询 s e r i e s series series的一些优秀的运算性质来解决问题。
  2. 在学习新知识的时候查询多手资料,不要盲信题目中给出的知识点讲解。
相关推荐
迅易科技16 分钟前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神1 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI2 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长2 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
梧桐树04293 小时前
python常用内建模块:collections
python
AI_NEW_COME3 小时前
知识库管理系统可扩展性深度测评
人工智能
Dream_Snowar3 小时前
速通Python 第三节
开发语言·python
海棠AI实验室4 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself4 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董4 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类