【MATLAB】 小波分解信号分解+FFT傅里叶频谱变换组合算法

有意向获取代码,请转文末观看代码获取方式~

展示出图效果

1 小波分解算法

小波分解算法是一种数学方法,用于将信号分解为不同频率的小波成分。这种算法基于小波函数,可以用于信号处理、图像压缩和数据压缩等领域。小波分解算法的基本思想是将一个信号分解成多个小波子带,每个小波子带代表了一个不同频率的小波成分。这些小波子带可以分别进行处理,例如滤波、降采样等操作,然后再进行重构,得到原始信号。小波分解算法的优点是可以提供更好的时频分辨率,对于瞬态信号和非平稳信号的处理效果更好。同时,小波分解算法也可以用于图像压缩和数据压缩,因为小波分解后的子带可以选择性地保留或舍弃,从而实现数据压缩。总之,小波分解算法是一种强大的信号处理技术,被广泛应用于信号处理、图像压缩和数据压缩等领域。

关于简短的代码视频教程均可关注B站、小红书、知乎同名账号(Lwcah)观看教程~

MATLAB 信号分解第六期-小波分解:

信号分解全家桶详情请参见:

2 FFT傅里叶频谱变换算法

傅里叶变换是一种数学方法,用于将一个信号分解成一系列正弦和余弦函数的和,从而更好地理解和处理信号。傅里叶变换在信号处理领域有着广泛的应用,包括音频处理、图像处理等。 具体来说,傅里叶变换的步骤如下:

  1. 给定一个连续时间域函数f(t),其中t为时间。

  2. 对f(t)进行傅里叶变换,得到它的频率域表示F(ω),其中ω为角频率。

  3. F(ω)表示了f(t)中所有频率分量的幅度和相位信息。

  4. 将F(ω)分解成一系列正弦和余弦函数的和,即: F(ω) = ∑[a(k)cos(kω) + b(k)sin(kω)] 其中,k为频率分量的序号,a(k)和b(k)分别为对应的正弦和余弦函数的系数。 傅里叶变换的优点是可以将时间域中的信号转换成频率域中的信号,从而更好地理解信号的频率分量和周期性特征,同时也方便进行一些信号处理任务,例如滤波、降噪等。缺点是傅里叶变换需要对整个信号进行处理,计算量较大,在实时处理等场景下可能会存在较大的延迟。

MATLAB | 频谱分析算法 | 傅里叶变换 开源 MATLAB 代码请转:

MATLAB | 9种频谱分析算法全家桶详情请参见:

3 小波分解信号分解+FFT傅里叶频谱变换组合算法

如下为简短的视频操作教程。

【MATLAB 】小波分解信号分解+FFT傅里叶频谱变换组合算法请转:

【MATLAB 】信号分解+FFT傅里叶频谱变换组合算法全家桶详情请参见:

关于代码有任何疑问,可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


代码见附件~

相关推荐
Piar1231sdafa7 分钟前
基于yolo13-C3k2-RVB的洗手步骤识别与检测系统实现_1
人工智能·算法·目标跟踪
a程序小傲8 分钟前
中国邮政Java面试被问:Netty的FastThreadLocal优化原理
java·服务器·开发语言·面试·职场和发展·github·哈希算法
做科研的周师兄8 分钟前
【MATLAB 实战】|多波段栅格数据提取部分波段均值——批量处理(NoData 修正 + 地理信息保真)_后附完整代码
前端·算法·机器学习·matlab·均值算法·分类·数据挖掘
淦。。。。13 分钟前
题解:P14013 [POCamp 2023] 送钱 / The Generous Traveler
开发语言·c++·经验分享·学习·其他·娱乐·新浪微博
橙露17 分钟前
C#在视觉检测中的优势:工业智能化转型的利器
开发语言·c#·视觉检测
醇氧18 分钟前
java.lang.NumberFormatException: For input string: ““
java·开发语言·spring
利刃大大21 分钟前
【ES6】变量与常量 && 模板字符串 && 对象 && 解构赋值 && 箭头函数 && 数组 && 扩展运算符 && Promise/Await/Async
开发语言·前端·javascript·es6
天赐学c语言22 分钟前
1.18 - 滑动窗口最大值 && 子类的指针转换为父类的指针,指针的值是否会改变
数据结构·c++·算法·leecode
大猫会长27 分钟前
postgreSQL中,RLS的using与with check
开发语言·前端·javascript
老蒋每日coding40 分钟前
Python:数字时代的“万能钥匙”
开发语言·python