【MATLAB】 小波分解信号分解+FFT傅里叶频谱变换组合算法

有意向获取代码,请转文末观看代码获取方式~

展示出图效果

1 小波分解算法

小波分解算法是一种数学方法,用于将信号分解为不同频率的小波成分。这种算法基于小波函数,可以用于信号处理、图像压缩和数据压缩等领域。小波分解算法的基本思想是将一个信号分解成多个小波子带,每个小波子带代表了一个不同频率的小波成分。这些小波子带可以分别进行处理,例如滤波、降采样等操作,然后再进行重构,得到原始信号。小波分解算法的优点是可以提供更好的时频分辨率,对于瞬态信号和非平稳信号的处理效果更好。同时,小波分解算法也可以用于图像压缩和数据压缩,因为小波分解后的子带可以选择性地保留或舍弃,从而实现数据压缩。总之,小波分解算法是一种强大的信号处理技术,被广泛应用于信号处理、图像压缩和数据压缩等领域。

关于简短的代码视频教程均可关注B站、小红书、知乎同名账号(Lwcah)观看教程~

MATLAB 信号分解第六期-小波分解:

信号分解全家桶详情请参见:

2 FFT傅里叶频谱变换算法

傅里叶变换是一种数学方法,用于将一个信号分解成一系列正弦和余弦函数的和,从而更好地理解和处理信号。傅里叶变换在信号处理领域有着广泛的应用,包括音频处理、图像处理等。 具体来说,傅里叶变换的步骤如下:

  1. 给定一个连续时间域函数f(t),其中t为时间。

  2. 对f(t)进行傅里叶变换,得到它的频率域表示F(ω),其中ω为角频率。

  3. F(ω)表示了f(t)中所有频率分量的幅度和相位信息。

  4. 将F(ω)分解成一系列正弦和余弦函数的和,即: F(ω) = ∑[a(k)cos(kω) + b(k)sin(kω)] 其中,k为频率分量的序号,a(k)和b(k)分别为对应的正弦和余弦函数的系数。 傅里叶变换的优点是可以将时间域中的信号转换成频率域中的信号,从而更好地理解信号的频率分量和周期性特征,同时也方便进行一些信号处理任务,例如滤波、降噪等。缺点是傅里叶变换需要对整个信号进行处理,计算量较大,在实时处理等场景下可能会存在较大的延迟。

MATLAB | 频谱分析算法 | 傅里叶变换 开源 MATLAB 代码请转:

MATLAB | 9种频谱分析算法全家桶详情请参见:

3 小波分解信号分解+FFT傅里叶频谱变换组合算法

如下为简短的视频操作教程。

【MATLAB 】小波分解信号分解+FFT傅里叶频谱变换组合算法请转:

【MATLAB 】信号分解+FFT傅里叶频谱变换组合算法全家桶详情请参见:

关于代码有任何疑问,可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


代码见附件~

相关推荐
Yuroo zhou12 分钟前
IMU的精度对无人机姿态控制意味着什么?
单片机·嵌入式硬件·算法·无人机·嵌入式实时数据库
jackzhuoa1 小时前
java小白闯关记第一天(两个数相加)
java·算法·蓝桥杯·期末
心.c1 小时前
JavaScript单线程实现异步
开发语言·前端·javascript·ecmascript
awonw2 小时前
[python][基础]Flask 技术栈
开发语言·python·flask
Codeking__2 小时前
链表算法综合——重排链表
网络·算法·链表
木宇(记得热爱生活)2 小时前
Qt GUI缓存实现
开发语言·qt·缓存
lly2024062 小时前
C# 正则表达式
开发语言
Chef_Chen2 小时前
从0开始学习R语言--Day58--竞争风险模型
android·开发语言·kotlin
minji...2 小时前
数据结构 堆(4)---TOP-K问题
java·数据结构·算法
咖啡の猫2 小时前
bash的特性-常见的快捷键
开发语言·chrome·bash