基于BP-Adaboost的预测与分类,附MATLAB代码免费获取

今天为大家带来一期基于BP-Adaboost的预测与分类。代码中的BP可以替换为任意的机器学习算法。

原理详解

BP-AdaBoos模型先通过 AdaBoost集成算法串行训练多个基学习器并计算每个基学习 器的权重系数,接着将各个基学习器的预测结果进行线性组合,生成最终的预测结果。关于更多的原理介绍请看:基于LSTM-Adaboost的电力负荷预测,附MATLAB代码

通过Adaboost算法便把许多个弱预测器集成为一个强预测器,最后通过强预测器对弱预测器的结果进行加权,得到最终结果。BP-Adaboost网络模型流程图如图所示:


结果展示

预测:

分类:

perl 复制代码
%% 该代码为基于BP_Adaboost的强预测器预测
%


%% 清空环境变量
clc
clear


%% 下载数据
load data1 input output


%% 权重初始化
k=rand(1,2000);
[m,n]=sort(k);


%训练样本
input_train=input(n(1:1900),:)';
output_train=output(n(1:1900),:)';


%测试样本
input_test=input(n(1901:2000),:)';
output_test=output(n(1901:2000),:)';


%样本权重
[mm,nn]=size(input_train);
D(1,:)=ones(1,nn)/nn;


%训练样本归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);


K=10;
for i=1:K
    
    %弱预测器训练
    net=newff(inputn,outputn,5);
    net.trainParam.epochs=20;
    net.trainParam.lr=0.1;
    net=train(net,inputn,outputn);
    
    %弱预测器预测
    an1=sim(net,inputn);
    BPoutput=mapminmax('reverse',an1,outputps);
    
    %预测误差
    erroryc(i,:)=output_train-BPoutput;
    
    %测试数据预测
    inputn1=mapminmax('apply',input_test,inputps);
    an2=sim(net,inputn1);
    test_simu(i,:)=mapminmax('reverse',an2,outputps);
    
    %调整D值
    Error(i)=0;
    for j=1:nn
        if abs(erroryc(i,j))>0.2  %较大误差
            Error(i)=Error(i)+D(i,j);
            D(i+1,j)=D(i,j)*1.1;
        else
            D(i+1,j)=D(i,j);
        end
    end
    
    %计算弱预测器权重
    at(i)=0.5/exp(abs(Error(i)));
    
    %D值归一化
    D(i+1,:)=D(i+1,:)/sum(D(i+1,:));
    
end


%% 强预测器预测
at=at/sum(at);


figure
plot(output_test,'r-o')
hold on
plot(output,'g-*')
title('BP-adaboost预测效果','fontsize',12)
legend('预测值','实际值')
xlabel('预测样本','fontsize',12)
ylabel('值','fontsize',12)






%% 结果统计
%强分离器效果
figure
output=at*test_simu;
error=output_test-output;
plot(abs(error),'-*')
hold on
for i=1:8
error1(i,:)=test_simu(i,:)-output;
end
plot(mean(abs(error1)),'-or')


title('强、弱预测器预测误差绝对值','fontsize',12)
xlabel('预测样本','fontsize',12)
ylabel('误差绝对值','fontsize',12)
legend('强预测器预测','弱预测器预测')
%%

代码获取

完整代码免费获取,后台回复关键词:

BPADABOOST


关于更对Adaboost模型,请看文章:

Adaboost风电功率预测,机器学习预测全家桶,MATLAB代码

相关推荐
LO嘉嘉VE3 分钟前
学习笔记十六:多变量决策树
决策树·机器学习
行者常至为者常成8 分钟前
基于LangGraph的自我改进智能体:Reflection与Reflexion技术详解与实现
人工智能
菠菠萝宝30 分钟前
【Java手搓RAGFlow】-9- RAG对话实现
java·开发语言·人工智能·llm·jenkins·openai
大佬,救命!!!1 小时前
最新的python3.14版本下仿真环境配置深度学习机器学习相关
开发语言·人工智能·python·深度学习·机器学习·学习笔记·环境配置
工业机器视觉设计和实现1 小时前
用caffe做个人脸识别
人工智能·深度学习·caffe
paperxie_xiexuo1 小时前
从研究问题到分析初稿:深度解析PaperXie AI科研工具中数据分析模块在学术写作场景下的辅助逻辑与技术实现路径
人工智能·数据挖掘·数据分析
T***u3332 小时前
Java机器学习框架
java·开发语言·机器学习
一水鉴天2 小时前
整体设计 定稿 之9 拼语言工具设计之前 的 备忘录仪表盘(CodeBuddy)
人工智能·架构·公共逻辑
vvoennvv2 小时前
【Python TensorFlow】 CNN-GRU卷积神经网络-门控循环神经网络时序预测算法(附代码)
python·神经网络·机器学习·cnn·gru·tensorflow
IT_陈寒2 小时前
Python性能提升50%:这5个隐藏技巧让你的代码快如闪电⚡
前端·人工智能·后端