以目标检测和分类任务为例理解One-Hot Code

在目标检测和分类任务中,每一个类别都需要一个编码来表示,同时,这个编码会用来计算网络的loss。比如有猫,狗,猪三种动物,这三种动物相互独立,在分类中,将其中任意一种分类为其他都同等的错误。

在这种情况下,我们比如将猫为0,狗为1,猪为2。就会出现一个问题,三者之间两两距离不同。 这在参与损失计算的时候是完全不能接受的:互相独立的标签之间,竟然出现了不对等的情况。

因此,需要有一种表示方法,将互相独立的标签表示为互相独立的数字,并且数字之间的距离也相等。

那么我们可以利用向量的正交性,也就是猫[1,0,0],狗[0,1,0],猪[0,0,1]。那么三者是相互独立的。也就是正交的。

可以这么理解,比如某个物体的分类为70%为猫,20%为狗,10%为猪。那么就有输出向量为[0.7,0.2,0.1],这个向量可以理解为在One-Hot编码构成的向量空间中的一个具体值,那么在计算loss的时候,将该值和其groundtruth对应的向量进行比对。在训练中,如果该物体真的为猫,那么其groundtruth就是[1,0,0],loss应该抑制后两个概率而增加第一位的概率。

例如这里假设一种loss计算 L o s s = ( G r o u n d T r u t h − 0.5 ) ⋅ P r e d i c t Loss=(GroundTruth-0.5)\cdot Predict Loss=(GroundTruth−0.5)⋅Predict就能够得到一个分数,这个分数的提升就代表着第一类的预测得分增大和后两项的减小。

One-Hot的缺点

当分类数量很大的时候,由于要保证各个分类的正交性,会产生维度爆炸的问题。

相关推荐
飞哥数智坊3 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三3 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯4 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet6 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算7 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心7 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar8 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai8 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI9 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear10 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp