以目标检测和分类任务为例理解One-Hot Code

在目标检测和分类任务中,每一个类别都需要一个编码来表示,同时,这个编码会用来计算网络的loss。比如有猫,狗,猪三种动物,这三种动物相互独立,在分类中,将其中任意一种分类为其他都同等的错误。

在这种情况下,我们比如将猫为0,狗为1,猪为2。就会出现一个问题,三者之间两两距离不同。 这在参与损失计算的时候是完全不能接受的:互相独立的标签之间,竟然出现了不对等的情况。

因此,需要有一种表示方法,将互相独立的标签表示为互相独立的数字,并且数字之间的距离也相等。

那么我们可以利用向量的正交性,也就是猫[1,0,0],狗[0,1,0],猪[0,0,1]。那么三者是相互独立的。也就是正交的。

可以这么理解,比如某个物体的分类为70%为猫,20%为狗,10%为猪。那么就有输出向量为[0.7,0.2,0.1],这个向量可以理解为在One-Hot编码构成的向量空间中的一个具体值,那么在计算loss的时候,将该值和其groundtruth对应的向量进行比对。在训练中,如果该物体真的为猫,那么其groundtruth就是[1,0,0],loss应该抑制后两个概率而增加第一位的概率。

例如这里假设一种loss计算 L o s s = ( G r o u n d T r u t h − 0.5 ) ⋅ P r e d i c t Loss=(GroundTruth-0.5)\cdot Predict Loss=(GroundTruth−0.5)⋅Predict就能够得到一个分数,这个分数的提升就代表着第一类的预测得分增大和后两项的减小。

One-Hot的缺点

当分类数量很大的时候,由于要保证各个分类的正交性,会产生维度爆炸的问题。

相关推荐
冰西瓜6007 小时前
从项目入手机器学习——鸢尾花分类
人工智能·机器学习·分类·数据挖掘
爱思德学术7 小时前
中国计算机学会(CCF)推荐学术会议-C(人工智能):IJCNN 2026
人工智能·神经网络·机器学习
偶信科技7 小时前
国产极细拖曳线列阵:16mm“水下之耳”如何撬动智慧海洋新蓝海?
人工智能·科技·偶信科技·海洋设备·极细拖曳线列阵
Java后端的Ai之路7 小时前
【神经网络基础】-神经网络学习全过程(大白话版)
人工智能·深度学习·神经网络·学习
庚昀◟8 小时前
用AI来“造AI”!Nexent部署本地智能体的沉浸式体验
人工智能·ai·nlp·持续部署
喜欢吃豆8 小时前
OpenAI Realtime API 深度技术架构与实现指南——如何实现AI实时通话
人工智能·语言模型·架构·大模型
数据分析能量站8 小时前
AI如何重塑个人生产力、组织架构和经济模式
人工智能
wscats9 小时前
Markdown 编辑器技术调研
前端·人工智能·markdown
AI科技星9 小时前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活
GIS数据转换器9 小时前
基于知识图谱的个性化旅游规划平台
人工智能·3d·无人机·知识图谱·旅游