【Python】进阶学习:pandas--isin()用法详解

【Python】进阶学习:pandas--isin()用法详解

🌈 个人主页:高斯小哥

🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化Python基础【高质量合集】PyTorch零基础入门教程👈 希望得到您的订阅和支持~

💡 创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、Python领域的优质内容!(希望得到您的关注~)


🌵文章目录🌵

  • [📚 一、pandas库简介](#📚 一、pandas库简介)
  • [🔍 二、isin()方法基础](#🔍 二、isin()方法基础)
    • [📋 示例1:筛选DataFrame中的特定值](#📋 示例1:筛选DataFrame中的特定值)
    • [📋 示例2:结合多个条件筛选](#📋 示例2:结合多个条件筛选)
  • [🎯 三、高级用法与技巧](#🎯 三、高级用法与技巧)
    • [📋 示例3:筛选DataFrame中多个列的值](#📋 示例3:筛选DataFrame中多个列的值)
    • [📋 示例4:结合set数据结构使用isin()](#📋 示例4:结合set数据结构使用isin())
  • [🎉 四、总结](#🎉 四、总结)
  • [🤝 五、期待与你共同进步](#🤝 五、期待与你共同进步)

📚 一、pandas库简介

pandas是Python中一个非常流行的数据处理库,它提供了大量的数据结构(如Series和DataFrame)以及数据分析工具,使得数据处理变得既简单又高效。在pandas中,isin()是一个非常重要的方法,它允许我们根据一个值列表来筛选数据。

🔍 二、isin()方法基础

isin()方法用于过滤数据框(DataFrame)或序列(Series)中的值,仅保留在给定列表中出现的值。

📋 示例1:筛选DataFrame中的特定值

假设我们有一个DataFrame df,其中包含学生的信息:

python 复制代码
import pandas as pd

# 创建一个示例DataFrame
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
    'Subject': ['Math', 'Science', 'Math', 'History', 'Science'],
    'Score': [90, 85, 92, 78, 88]
}
df = pd.DataFrame(data)

# 筛选Subject列为'Math'或'Science'的学生
selected_students = df[df['Subject'].isin(['Math', 'Science'])]
print(selected_students)

输出:

c 复制代码
      Name  Subject  Score
0    Alice     Math     90
1      Bob  Science     85
2  Charlie     Math     92
4      Eve  Science     88

📋 示例2:结合多个条件筛选

isin()方法可以与其他条件筛选方法结合使用,以创建更复杂的筛选条件。

python 复制代码
import pandas as pd

# 创建一个示例DataFrame
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
    'Subject': ['Math', 'Science', 'Math', 'History', 'Science'],
    'Score': [90, 85, 92, 78, 88]
}
df = pd.DataFrame(data)

# 筛选Score大于85且Subject为'Math'或'Science'的学生
combined_filter = df[(df['Score'] > 85) & df['Subject'].isin(['Math', 'Science'])]
print(combined_filter)

输出:

c 复制代码
      Name  Subject  Score
0    Alice     Math     90
2  Charlie     Math     92
4      Eve  Science     88

🎯 三、高级用法与技巧

isin()方法不仅限于简单的值匹配,还可以与其他pandas功能结合使用,以实现更高级的数据筛选。

📋 示例3:筛选DataFrame中多个列的值

我们可以同时检查多个列中的值是否存在于给定的列表中。

python 复制代码
import pandas as pd

# 创建一个示例DataFrame
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
    'Subject': ['Math', 'Science', 'Math', 'History', 'Science'],
    'Score': [90, 85, 92, 78, 88]
}
df = pd.DataFrame(data)

# 筛选Name为'Alice'或'Charlie',且Subject为'Math'或'Science'的学生
multi_column_filter = df[(df['Name'].isin(['Alice', 'Charlie']) & df['Subject'].isin(['Math', 'Science']))]
print(multi_column_filter)

输出:

c 复制代码
      Name Subject  Score
0    Alice    Math     90
2  Charlie    Math     92

📋 示例4:结合set数据结构使用isin()

使用set数据结构可以更有效地执行isin()操作,尤其是当比较值列表非常大时。

python 复制代码
import pandas as pd

# 创建一个示例DataFrame
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
    'Subject': ['Math', 'Science', 'Math', 'History', 'Science'],
    'Score': [90, 85, 92, 78, 88]
}
df = pd.DataFrame(data)

# 将要匹配的值转换为set以提高效率
subjects_set = {'Math', 'Science'}

# 筛选Subject列为'Math'或'Science'的学生
set_filter = df[df['Subject'].isin(subjects_set)]
print(set_filter)

输出:

c 复制代码
      Name  Subject  Score
0    Alice     Math     90
1      Bob  Science     85
2  Charlie     Math     92
4      Eve  Science     88

🎉 四、总结

isin()是pandas中一个非常实用的方法,它允许我们根据给定的值列表来筛选数据。通过结合不同的条件和技巧,我们可以实现复杂的数据筛选任务。在使用isin()方法时,保持代码清晰、高效和易于维护非常重要。通过遵循最佳实践,我们可以确保筛选操作能够快速、准确地返回所需的结果。

🤝 五、期待与你共同进步

在数据处理的旅程中,我们始终在学习和成长。希望这篇博客能够帮助你更好地理解和应用pandas中的isin()方法。如果你有任何疑问或建议,欢迎在评论区留言,我们一起探讨和学习。同时,也期待你分享你的经验和见解,让我们共同进步!

相关推荐
SteveKenny13 分钟前
Python 梯度下降法(六):Nadam Optimize
开发语言·python
dreadp2 小时前
解锁豆瓣高清海报(二) 使用 OpenCV 拼接和压缩
图像处理·python·opencv·计算机视觉·数据分析
Tester_孙大壮2 小时前
第32章 测试驱动开发(TDD)的原理、实践、关联与争议(Python 版)
驱动开发·python·tdd
__雨夜星辰__3 小时前
Linux 学习笔记__Day2
linux·服务器·笔记·学习·centos 7
学问小小谢3 小时前
第26节课:内容安全策略(CSP)—构建安全网页的防御盾
运维·服务器·前端·网络·学习·安全
小王子10246 小时前
设计模式Python版 组合模式
python·设计模式·组合模式
charlie1145141916 小时前
从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架(协议层封装)
c语言·驱动开发·单片机·学习·教程·oled
Mason Lin7 小时前
2025年1月22日(网络编程 udp)
网络·python·udp
马船长7 小时前
[BSidesCF 2020]Had a bad day1
学习
清弦墨客7 小时前
【蓝桥杯】43697.机器人塔
python·蓝桥杯·程序算法