pytorch梯度累积

梯度累加其实是为了变相扩大batch_size,用来解决显存受限问题。

常规训练方式,每次从train_loader读取出一个batch的数据:

python 复制代码
for x,y in train_loader:
	pred = model(x)
	loss = criterion(pred, label)
	# 反向传播
	loss.backward()
	# 根据新的梯度更新网络参数
	optimizer.step()
	# 清空以往梯度,通过下面反向传播重新计算梯度
	optimizer.zero_grad()

pytorch每次forward完都会得到一个用于梯度回传的计算图,pytorch构建的计算图是动态的,其实在每次backward后计算图都会从内存中释放掉,但是梯度不会清空的。所以若不显示的进行optimizer.zero_grad()清空过往梯度这一步操作,backward()的时候就会累加过往梯度。

梯度累加的做法:

python 复制代码
accumulation_steps = 4
for i,(x,y) in enumerate(train_loader):
	pred = model(x)
	loss = criterion(pred, label)
	
	# 相当于对累加后的梯度取平均
	loss = loss/accumulation_steps
	# 反向传播
	loss.backward()

	if (i+1) % accumulation_steps == 0:
		# 根据新的梯度更新网络参数
		optimizer.step()
		# 清空以往梯度,通过下面反向传播重新计算梯度
		optimizer.zero_grad()

代码中设置accumulation_steps = 4,意思就是变相扩大batch_size四倍。因为代码中每隔4次迭代才清空梯度,更新参数。

至于为啥loss = loss/accumulation_steps,因为梯度累加了四次呀,那就要取平均,除以4。那我每次loss取4,其实就相当于最后将累加后的梯度除4咯。同时,因为累计了4个batch,那学习率也应该扩大4倍,让更新的步子跨大点。

看网上的帖子有讨论对BN层是否有影响,因为BN的估算阶段(计算batch内均值、方差)是在forward阶段完成的,那真实的batch_size放大4倍效果肯定是比通过梯度累加放大4倍效果好的,毕竟计算真实的大batch_size内的均值、方差肯定更精确。

还有讨论说通过调低BN参数momentum可以得到更长序列的统计信息,应该意思是能够记忆更久远的统计信息(均值、方差),以逼近真实的扩大batch_size的效果。

参考

pytorch骚操作之梯度累加,变相增大batch size

相关推荐
点云SLAM5 分钟前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
哈里谢顿5 分钟前
验证 list() 会调用 `__len__` 方法的深度解析
python·django
会周易的程序员12 分钟前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构
BlockWay13 分钟前
WEEX 成为 LALIGA 西甲联赛香港及台湾地区官方区域合作伙伴
大数据·人工智能·安全
虹科网络安全20 分钟前
艾体宝案例 | 从关系到语义:ArangoDB如何支撑高精度水军识别
人工智能
大霸王龙29 分钟前
MinIO 对象存储系统架构图集
人工智能·llm·minio
汗流浃背了吧,老弟!32 分钟前
什么是ResNet
人工智能·深度学习
vibag36 分钟前
构建智能体与工具调用
python·语言模型·大模型·langgraph
小途软件41 分钟前
高校宿舍访客预约管理平台开发
java·人工智能·pytorch·python·深度学习·语言模型
-dcr1 小时前
49.python自动化
运维·python·自动化