pytorch梯度累积

梯度累加其实是为了变相扩大batch_size,用来解决显存受限问题。

常规训练方式,每次从train_loader读取出一个batch的数据:

python 复制代码
for x,y in train_loader:
	pred = model(x)
	loss = criterion(pred, label)
	# 反向传播
	loss.backward()
	# 根据新的梯度更新网络参数
	optimizer.step()
	# 清空以往梯度,通过下面反向传播重新计算梯度
	optimizer.zero_grad()

pytorch每次forward完都会得到一个用于梯度回传的计算图,pytorch构建的计算图是动态的,其实在每次backward后计算图都会从内存中释放掉,但是梯度不会清空的。所以若不显示的进行optimizer.zero_grad()清空过往梯度这一步操作,backward()的时候就会累加过往梯度。

梯度累加的做法:

python 复制代码
accumulation_steps = 4
for i,(x,y) in enumerate(train_loader):
	pred = model(x)
	loss = criterion(pred, label)
	
	# 相当于对累加后的梯度取平均
	loss = loss/accumulation_steps
	# 反向传播
	loss.backward()

	if (i+1) % accumulation_steps == 0:
		# 根据新的梯度更新网络参数
		optimizer.step()
		# 清空以往梯度,通过下面反向传播重新计算梯度
		optimizer.zero_grad()

代码中设置accumulation_steps = 4,意思就是变相扩大batch_size四倍。因为代码中每隔4次迭代才清空梯度,更新参数。

至于为啥loss = loss/accumulation_steps,因为梯度累加了四次呀,那就要取平均,除以4。那我每次loss取4,其实就相当于最后将累加后的梯度除4咯。同时,因为累计了4个batch,那学习率也应该扩大4倍,让更新的步子跨大点。

看网上的帖子有讨论对BN层是否有影响,因为BN的估算阶段(计算batch内均值、方差)是在forward阶段完成的,那真实的batch_size放大4倍效果肯定是比通过梯度累加放大4倍效果好的,毕竟计算真实的大batch_size内的均值、方差肯定更精确。

还有讨论说通过调低BN参数momentum可以得到更长序列的统计信息,应该意思是能够记忆更久远的统计信息(均值、方差),以逼近真实的扩大batch_size的效果。

参考

pytorch骚操作之梯度累加,变相增大batch size

相关推荐
a1117762 小时前
医院挂号预约系统(开源 Fastapi+vue2)
前端·vue.js·python·html5·fastapi
0思必得02 小时前
[Web自动化] Selenium处理iframe和frame
前端·爬虫·python·selenium·自动化·web自动化
ar01232 小时前
AR远程协助作用
人工智能·ar
北京青翼科技2 小时前
PCIe接口-高速模拟采集—高性能计算卡-青翼科技高品质军工级数据采集板-打造专业工业核心板
图像处理·人工智能·fpga开发·信号处理·智能硬件
软件聚导航3 小时前
马年、我用AI写了个“打工了马” 小程序
人工智能·ui·微信小程序
陈天伟教授4 小时前
人工智能应用-机器听觉:7. 统计合成法
人工智能·语音识别
笨蛋不要掉眼泪4 小时前
Spring Boot集成LangChain4j:与大模型对话的极速入门
java·人工智能·后端·spring·langchain
昨夜见军贴06164 小时前
IACheck AI审核技术赋能消费认证:为智能宠物喂食器TELEC报告构筑智能合规防线
人工智能·宠物
摘星编程4 小时前
OpenHarmony + RN:Calendar日期选择功能
python
DisonTangor4 小时前
阿里开源语音识别模型——Qwen3-ASR
人工智能·开源·语音识别