pytorch梯度累积

梯度累加其实是为了变相扩大batch_size,用来解决显存受限问题。

常规训练方式,每次从train_loader读取出一个batch的数据:

python 复制代码
for x,y in train_loader:
	pred = model(x)
	loss = criterion(pred, label)
	# 反向传播
	loss.backward()
	# 根据新的梯度更新网络参数
	optimizer.step()
	# 清空以往梯度,通过下面反向传播重新计算梯度
	optimizer.zero_grad()

pytorch每次forward完都会得到一个用于梯度回传的计算图,pytorch构建的计算图是动态的,其实在每次backward后计算图都会从内存中释放掉,但是梯度不会清空的。所以若不显示的进行optimizer.zero_grad()清空过往梯度这一步操作,backward()的时候就会累加过往梯度。

梯度累加的做法:

python 复制代码
accumulation_steps = 4
for i,(x,y) in enumerate(train_loader):
	pred = model(x)
	loss = criterion(pred, label)
	
	# 相当于对累加后的梯度取平均
	loss = loss/accumulation_steps
	# 反向传播
	loss.backward()

	if (i+1) % accumulation_steps == 0:
		# 根据新的梯度更新网络参数
		optimizer.step()
		# 清空以往梯度,通过下面反向传播重新计算梯度
		optimizer.zero_grad()

代码中设置accumulation_steps = 4,意思就是变相扩大batch_size四倍。因为代码中每隔4次迭代才清空梯度,更新参数。

至于为啥loss = loss/accumulation_steps,因为梯度累加了四次呀,那就要取平均,除以4。那我每次loss取4,其实就相当于最后将累加后的梯度除4咯。同时,因为累计了4个batch,那学习率也应该扩大4倍,让更新的步子跨大点。

看网上的帖子有讨论对BN层是否有影响,因为BN的估算阶段(计算batch内均值、方差)是在forward阶段完成的,那真实的batch_size放大4倍效果肯定是比通过梯度累加放大4倍效果好的,毕竟计算真实的大batch_size内的均值、方差肯定更精确。

还有讨论说通过调低BN参数momentum可以得到更长序列的统计信息,应该意思是能够记忆更久远的统计信息(均值、方差),以逼近真实的扩大batch_size的效果。

参考

pytorch骚操作之梯度累加,变相增大batch size

相关推荐
小二·1 小时前
Python Web 开发进阶实战:性能压测与调优 —— Locust + Prometheus + Grafana 构建高并发可观测系统
前端·python·prometheus
leo__5201 小时前
基于MATLAB的交互式多模型跟踪算法(IMM)实现
人工智能·算法·matlab
脑极体2 小时前
云厂商的AI决战
人工智能
njsgcs2 小时前
NVIDIA NitroGen 是强化学习还是llm
人工智能
七牛云行业应用2 小时前
重构实录:我删了 5 家大模型 SDK,只留了 OpenAI 标准库
python·系统架构·大模型·aigc·deepseek
知乎的哥廷根数学学派2 小时前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
mantch2 小时前
Nano Banana进行AI绘画中文总是糊?一招可重新渲染,清晰到可直接汇报
人工智能·aigc
编程小白_正在努力中3 小时前
第1章 机器学习基础
人工智能·机器学习
一人の梅雨3 小时前
亚马逊SP-API商品详情接口轻量化实战:合规与商业价值提取指南
python
wyw00003 小时前
目标检测之SSD
人工智能·目标检测·计算机视觉