pytorch梯度累积

梯度累加其实是为了变相扩大batch_size,用来解决显存受限问题。

常规训练方式,每次从train_loader读取出一个batch的数据:

python 复制代码
for x,y in train_loader:
	pred = model(x)
	loss = criterion(pred, label)
	# 反向传播
	loss.backward()
	# 根据新的梯度更新网络参数
	optimizer.step()
	# 清空以往梯度,通过下面反向传播重新计算梯度
	optimizer.zero_grad()

pytorch每次forward完都会得到一个用于梯度回传的计算图,pytorch构建的计算图是动态的,其实在每次backward后计算图都会从内存中释放掉,但是梯度不会清空的。所以若不显示的进行optimizer.zero_grad()清空过往梯度这一步操作,backward()的时候就会累加过往梯度。

梯度累加的做法:

python 复制代码
accumulation_steps = 4
for i,(x,y) in enumerate(train_loader):
	pred = model(x)
	loss = criterion(pred, label)
	
	# 相当于对累加后的梯度取平均
	loss = loss/accumulation_steps
	# 反向传播
	loss.backward()

	if (i+1) % accumulation_steps == 0:
		# 根据新的梯度更新网络参数
		optimizer.step()
		# 清空以往梯度,通过下面反向传播重新计算梯度
		optimizer.zero_grad()

代码中设置accumulation_steps = 4,意思就是变相扩大batch_size四倍。因为代码中每隔4次迭代才清空梯度,更新参数。

至于为啥loss = loss/accumulation_steps,因为梯度累加了四次呀,那就要取平均,除以4。那我每次loss取4,其实就相当于最后将累加后的梯度除4咯。同时,因为累计了4个batch,那学习率也应该扩大4倍,让更新的步子跨大点。

看网上的帖子有讨论对BN层是否有影响,因为BN的估算阶段(计算batch内均值、方差)是在forward阶段完成的,那真实的batch_size放大4倍效果肯定是比通过梯度累加放大4倍效果好的,毕竟计算真实的大batch_size内的均值、方差肯定更精确。

还有讨论说通过调低BN参数momentum可以得到更长序列的统计信息,应该意思是能够记忆更久远的统计信息(均值、方差),以逼近真实的扩大batch_size的效果。

参考

pytorch骚操作之梯度累加,变相增大batch size

相关推荐
秋邱1 天前
AR 应用流量增长与品牌 IP 打造:从被动接单到主动获客
开发语言·人工智能·后端·python·ar·restful
AI_Auto1 天前
智能制造 - 人工智能、隐私保护、信息安全
人工智能·制造
一只乔哇噻1 天前
java后端工程师+AI大模型开发进修ing(研一版‖day60)
java·开发语言·人工智能·学习·语言模型
千里码aicood1 天前
计算机大数据、人工智能与智能系统开发定制开发
大数据·人工智能·深度学习·决策树·机器学习·森林树
币圈菜头1 天前
【空投速递】GAEA项目解析:首个集成人类情感数据的去中心化AI训练网络
人工智能·web3·去中心化·区块链
ID_180079054731 天前
基于 Python 的 Cdiscount 商品详情 API 调用与 JSON 核心字段解析(含多规格 SKU 提取)
开发语言·python·json
Dcs1 天前
你的 Prompt 都该重写?
人工智能·ai编程
木卫二号Coding1 天前
第五十三篇-Ollama+V100+Qwen3:4B-性能
人工智能
飞哥数智坊1 天前
AI 不只是聊天:聊聊我最近在做的新方向
人工智能
Q_Q5110082851 天前
python+django/flask+vue的大健康养老公寓管理系统
spring boot·python·django·flask·node.js