飞桨(PaddlePaddle)快速上手教程

文章目录

      • 飞桨(PaddlePaddle)快速上手教程
        • [1. 快速安装飞桨](#1. 快速安装飞桨)
        • [2. 导入飞桨](#2. 导入飞桨)
        • [3. 实践:手写数字识别任务](#3. 实践:手写数字识别任务)
          • [3.1 数据集定义与加载](#3.1 数据集定义与加载)
          • [3.2 模型组网](#3.2 模型组网)
          • [3.3 模型训练与评估](#3.3 模型训练与评估)
          • [3.4 模型推理](#3.4 模型推理)
        • [4. 总结](#4. 总结)

飞桨(PaddlePaddle)快速上手教程

本教程将引导您通过一个简单的手写数字识别任务来快速了解深度学习模型开发的流程,并掌握飞桨框架API的基本使用方法。

1. 快速安装飞桨

首先,确保您的Python版本在3.6到3.9之间,并安装了相应版本的pip。然后,使用以下命令安装飞桨:

bash 复制代码
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
2. 导入飞桨

在Python解释器中导入飞桨:

python 复制代码
import paddle
print(paddle.__version__)
3. 实践:手写数字识别任务
3.1 数据集定义与加载

使用飞桨内置的MNIST数据集进行训练和测试。

python 复制代码
from paddle.vision.datasets import MNIST
from paddle.vision.transforms import Normalize

transform = Normalize(mean=[127.5], std=[127.5], data_format='CHW')
train_dataset = MNIST(mode='train', transform=transform)
test_dataset = MNIST(mode='test', transform=transform)
3.2 模型组网

使用飞桨内置的LeNet模型。

python 复制代码
from paddle.vision.models import LeNet
model = LeNet(num_classes=10)
3.3 模型训练与评估

使用paddle.Model封装模型,并进行训练和评估。

python 复制代码
from paddle.Model import Model
from paddle.optimizer import Adam
from paddle.nn.losses import CrossEntropyLoss
from paddle.metric import Accuracy

model = Model(model)
model.prepare(optimizer=Adam(parameters=model.parameters(), learning_rate=0.001),
              loss=CrossEntropyLoss(),
              metrics=Accuracy())
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)

eval_result = model.evaluate(test_dataset)
print(eval_result)
3.4 模型推理

保存模型并加载进行推理。

python 复制代码
model.save('./output/mnist')
loaded_model = paddle.Model.load('./output/mnist')

# 从测试集中取出一张图片进行推理
img, label = test_dataset[0]
img_batch = paddle.expand_dims(img, axis=0).astype('float32')
pred_label = loaded_model.predict([img_batch])
true_label = label.numpy()[0]
pred_label = pred_label[0].numpy()

print(f'true label: {true_label}, pred label: {pred_label}')
4. 总结

通过以上步骤,您已经完成了一个深度学习任务,从数据加载到模型训练、评估和推理。飞桨提供了丰富的API来支持更复杂的任务和模型开发。您可以访问飞桨官网获取更多教程和案例,深入探索深度学习的世界。

相关推荐
麻雀无能为力2 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心2 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
.30-06Springfield3 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域4 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技4 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_14 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎5 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎5 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程
要努力啊啊啊5 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪