飞桨(PaddlePaddle)快速上手教程

文章目录

      • 飞桨(PaddlePaddle)快速上手教程
        • [1. 快速安装飞桨](#1. 快速安装飞桨)
        • [2. 导入飞桨](#2. 导入飞桨)
        • [3. 实践:手写数字识别任务](#3. 实践:手写数字识别任务)
          • [3.1 数据集定义与加载](#3.1 数据集定义与加载)
          • [3.2 模型组网](#3.2 模型组网)
          • [3.3 模型训练与评估](#3.3 模型训练与评估)
          • [3.4 模型推理](#3.4 模型推理)
        • [4. 总结](#4. 总结)

飞桨(PaddlePaddle)快速上手教程

本教程将引导您通过一个简单的手写数字识别任务来快速了解深度学习模型开发的流程,并掌握飞桨框架API的基本使用方法。

1. 快速安装飞桨

首先,确保您的Python版本在3.6到3.9之间,并安装了相应版本的pip。然后,使用以下命令安装飞桨:

bash 复制代码
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
2. 导入飞桨

在Python解释器中导入飞桨:

python 复制代码
import paddle
print(paddle.__version__)
3. 实践:手写数字识别任务
3.1 数据集定义与加载

使用飞桨内置的MNIST数据集进行训练和测试。

python 复制代码
from paddle.vision.datasets import MNIST
from paddle.vision.transforms import Normalize

transform = Normalize(mean=[127.5], std=[127.5], data_format='CHW')
train_dataset = MNIST(mode='train', transform=transform)
test_dataset = MNIST(mode='test', transform=transform)
3.2 模型组网

使用飞桨内置的LeNet模型。

python 复制代码
from paddle.vision.models import LeNet
model = LeNet(num_classes=10)
3.3 模型训练与评估

使用paddle.Model封装模型,并进行训练和评估。

python 复制代码
from paddle.Model import Model
from paddle.optimizer import Adam
from paddle.nn.losses import CrossEntropyLoss
from paddle.metric import Accuracy

model = Model(model)
model.prepare(optimizer=Adam(parameters=model.parameters(), learning_rate=0.001),
              loss=CrossEntropyLoss(),
              metrics=Accuracy())
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)

eval_result = model.evaluate(test_dataset)
print(eval_result)
3.4 模型推理

保存模型并加载进行推理。

python 复制代码
model.save('./output/mnist')
loaded_model = paddle.Model.load('./output/mnist')

# 从测试集中取出一张图片进行推理
img, label = test_dataset[0]
img_batch = paddle.expand_dims(img, axis=0).astype('float32')
pred_label = loaded_model.predict([img_batch])
true_label = label.numpy()[0]
pred_label = pred_label[0].numpy()

print(f'true label: {true_label}, pred label: {pred_label}')
4. 总结

通过以上步骤,您已经完成了一个深度学习任务,从数据加载到模型训练、评估和推理。飞桨提供了丰富的API来支持更复杂的任务和模型开发。您可以访问飞桨官网获取更多教程和案例,深入探索深度学习的世界。

相关推荐
Q813757460几秒前
数据挖掘在金融交易中的应用:民锋科技的智能化布局
人工智能·科技·数据挖掘
qzhqbb4 分钟前
语言模型的采样方法
人工智能·语言模型·自然语言处理
qzhqbb7 分钟前
基于 Transformer 的语言模型
人工智能·语言模型·自然语言处理·transformer
___Dream7 分钟前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
极客代码15 分钟前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
义小深17 分钟前
TensorFlow|咖啡豆识别
人工智能·python·tensorflow
Tianyanxiao1 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
撞南墙者1 小时前
OpenCV自学系列(1)——简介和GUI特征操作
人工智能·opencv·计算机视觉
OCR_wintone4211 小时前
易泊车牌识别相机,助力智慧工地建设
人工智能·数码相机·ocr
王哈哈^_^1 小时前
【数据集】【YOLO】【VOC】目标检测数据集,查找数据集,yolo目标检测算法详细实战训练步骤!
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·pyqt