飞桨(PaddlePaddle)快速上手教程

文章目录

      • 飞桨(PaddlePaddle)快速上手教程
        • [1. 快速安装飞桨](#1. 快速安装飞桨)
        • [2. 导入飞桨](#2. 导入飞桨)
        • [3. 实践:手写数字识别任务](#3. 实践:手写数字识别任务)
          • [3.1 数据集定义与加载](#3.1 数据集定义与加载)
          • [3.2 模型组网](#3.2 模型组网)
          • [3.3 模型训练与评估](#3.3 模型训练与评估)
          • [3.4 模型推理](#3.4 模型推理)
        • [4. 总结](#4. 总结)

飞桨(PaddlePaddle)快速上手教程

本教程将引导您通过一个简单的手写数字识别任务来快速了解深度学习模型开发的流程,并掌握飞桨框架API的基本使用方法。

1. 快速安装飞桨

首先,确保您的Python版本在3.6到3.9之间,并安装了相应版本的pip。然后,使用以下命令安装飞桨:

bash 复制代码
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
2. 导入飞桨

在Python解释器中导入飞桨:

python 复制代码
import paddle
print(paddle.__version__)
3. 实践:手写数字识别任务
3.1 数据集定义与加载

使用飞桨内置的MNIST数据集进行训练和测试。

python 复制代码
from paddle.vision.datasets import MNIST
from paddle.vision.transforms import Normalize

transform = Normalize(mean=[127.5], std=[127.5], data_format='CHW')
train_dataset = MNIST(mode='train', transform=transform)
test_dataset = MNIST(mode='test', transform=transform)
3.2 模型组网

使用飞桨内置的LeNet模型。

python 复制代码
from paddle.vision.models import LeNet
model = LeNet(num_classes=10)
3.3 模型训练与评估

使用paddle.Model封装模型,并进行训练和评估。

python 复制代码
from paddle.Model import Model
from paddle.optimizer import Adam
from paddle.nn.losses import CrossEntropyLoss
from paddle.metric import Accuracy

model = Model(model)
model.prepare(optimizer=Adam(parameters=model.parameters(), learning_rate=0.001),
              loss=CrossEntropyLoss(),
              metrics=Accuracy())
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)

eval_result = model.evaluate(test_dataset)
print(eval_result)
3.4 模型推理

保存模型并加载进行推理。

python 复制代码
model.save('./output/mnist')
loaded_model = paddle.Model.load('./output/mnist')

# 从测试集中取出一张图片进行推理
img, label = test_dataset[0]
img_batch = paddle.expand_dims(img, axis=0).astype('float32')
pred_label = loaded_model.predict([img_batch])
true_label = label.numpy()[0]
pred_label = pred_label[0].numpy()

print(f'true label: {true_label}, pred label: {pred_label}')
4. 总结

通过以上步骤,您已经完成了一个深度学习任务,从数据加载到模型训练、评估和推理。飞桨提供了丰富的API来支持更复杂的任务和模型开发。您可以访问飞桨官网获取更多教程和案例,深入探索深度学习的世界。

相关推荐
蚝油菜花9 分钟前
DeepSite:基于DeepSeek的开源AI前端开发神器,一键生成游戏/网页代码
人工智能·开源
蚝油菜花9 分钟前
PaperBench:OpenAI开源AI智能体评测基准,8316节点精准考核复现能力
人工智能·开源
蚝油菜花13 分钟前
DreamActor-M1:字节跳动推出AI动画黑科技,静态照片秒变生动视频
人工智能·开源
MPCTHU14 分钟前
预测分析(三):基于机器学习的分类预测
人工智能·机器学习·分类
jndingxin20 分钟前
OpenCV 图形API(11)对图像进行掩码操作的函数mask()
人工智能·opencv·计算机视觉
Scc_hy30 分钟前
强化学习_Paper_1988_Learning to predict by the methods of temporal differences
人工智能·深度学习·算法
袁煦丞33 分钟前
【亲测】1.5万搞定DeepSeek满血版!本地部署避坑指南+内网穿透黑科技揭秘
人工智能·程序员·远程工作
大模型真好玩34 分钟前
理论+代码一文带你深入浅出MCP:人工智能大模型与外部世界交互的革命性突破
人工智能·python·mcp
遇码1 小时前
大语言模型开发框架——LangChain
人工智能·语言模型·langchain·llm·大模型开发·智能体