飞桨(PaddlePaddle)快速上手教程

文章目录

      • 飞桨(PaddlePaddle)快速上手教程
        • [1. 快速安装飞桨](#1. 快速安装飞桨)
        • [2. 导入飞桨](#2. 导入飞桨)
        • [3. 实践:手写数字识别任务](#3. 实践:手写数字识别任务)
          • [3.1 数据集定义与加载](#3.1 数据集定义与加载)
          • [3.2 模型组网](#3.2 模型组网)
          • [3.3 模型训练与评估](#3.3 模型训练与评估)
          • [3.4 模型推理](#3.4 模型推理)
        • [4. 总结](#4. 总结)

飞桨(PaddlePaddle)快速上手教程

本教程将引导您通过一个简单的手写数字识别任务来快速了解深度学习模型开发的流程,并掌握飞桨框架API的基本使用方法。

1. 快速安装飞桨

首先,确保您的Python版本在3.6到3.9之间,并安装了相应版本的pip。然后,使用以下命令安装飞桨:

bash 复制代码
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
2. 导入飞桨

在Python解释器中导入飞桨:

python 复制代码
import paddle
print(paddle.__version__)
3. 实践:手写数字识别任务
3.1 数据集定义与加载

使用飞桨内置的MNIST数据集进行训练和测试。

python 复制代码
from paddle.vision.datasets import MNIST
from paddle.vision.transforms import Normalize

transform = Normalize(mean=[127.5], std=[127.5], data_format='CHW')
train_dataset = MNIST(mode='train', transform=transform)
test_dataset = MNIST(mode='test', transform=transform)
3.2 模型组网

使用飞桨内置的LeNet模型。

python 复制代码
from paddle.vision.models import LeNet
model = LeNet(num_classes=10)
3.3 模型训练与评估

使用paddle.Model封装模型,并进行训练和评估。

python 复制代码
from paddle.Model import Model
from paddle.optimizer import Adam
from paddle.nn.losses import CrossEntropyLoss
from paddle.metric import Accuracy

model = Model(model)
model.prepare(optimizer=Adam(parameters=model.parameters(), learning_rate=0.001),
              loss=CrossEntropyLoss(),
              metrics=Accuracy())
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)

eval_result = model.evaluate(test_dataset)
print(eval_result)
3.4 模型推理

保存模型并加载进行推理。

python 复制代码
model.save('./output/mnist')
loaded_model = paddle.Model.load('./output/mnist')

# 从测试集中取出一张图片进行推理
img, label = test_dataset[0]
img_batch = paddle.expand_dims(img, axis=0).astype('float32')
pred_label = loaded_model.predict([img_batch])
true_label = label.numpy()[0]
pred_label = pred_label[0].numpy()

print(f'true label: {true_label}, pred label: {pred_label}')
4. 总结

通过以上步骤,您已经完成了一个深度学习任务,从数据加载到模型训练、评估和推理。飞桨提供了丰富的API来支持更复杂的任务和模型开发。您可以访问飞桨官网获取更多教程和案例,深入探索深度学习的世界。

相关推荐
GoldenSpider.AI7 小时前
AI对话到视频的零编辑革命:NotebookLM与Lemon Slice的深度整合与未来洞察
人工智能·notebooklm·nanobanana·aivideo·lemon slice
草莓熊Lotso7 小时前
C++ STL set 系列完全指南:从底层原理、核心接口到实战场景
开发语言·c++·人工智能·经验分享·网络协议·算法·dubbo
大千AI助手9 小时前
代价复杂度剪枝(CCP)详解:原理、实现与应用
人工智能·决策树·机器学习·剪枝·大千ai助手·代价复杂度剪枝·ccp
zl_vslam10 小时前
SLAM中的非线性优-3D图优化之李群李代数在Opencv-PNP中的应用(四)
人工智能·opencv·算法·计算机视觉
whaosoft-14310 小时前
51c视觉~3D~合集8
人工智能
澳鹏Appen13 小时前
数据集月度精选 | 高质量具身智能数据集:打开机器人“感知-决策-动作”闭环的钥匙
人工智能·机器人·具身智能
q***710114 小时前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源
极限实验室14 小时前
Coco AI 参选 Gitee 2025 最受欢迎开源软件!您的每一票,都是对中国开源的硬核支持
人工智能·开源
secondyoung14 小时前
Mermaid流程图高效转换为图片方案
c语言·人工智能·windows·vscode·python·docker·流程图
iFlow_AI14 小时前
iFlow CLI Hooks 「从入门到实战」应用指南
开发语言·前端·javascript·人工智能·ai·iflow·iflow cli