形态学笔记:侵蚀+膨胀+开运算+闭运算+形态学梯度+顶帽运算+黑帽运算

形态学

一般在二值图上操作

输入:原图、操作结构内核

简单阈值

对于每个像素,应用相同的阈值。如果像素值小于阈值,则将其设置为0,否则将其设置为最大值

原图-->灰度图-->二值图

python 复制代码
logo = cv2.imread('./fans.jpg')
# 参数1 被转换的图像
# 参数2 原图转为灰度图
logo_gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
# 转为二值图
# 参数1 灰度图
# 参数2 阈值 小于阈值为0
# 参数3 大于阈值为maxval
# 参数4 类型    cv2.THRESH_BINARY   cv2.THRESH_OTSU 会自适应阈值
# retval, logo_binary = cv2.threshold(logo_gray, 100, 255, cv2.THRESH_BINARY)
retval, logo_binary = cv2.threshold(logo_gray, 100, 255, cv2.THRESH_OTSU)

侵蚀

内核在原图上滑动,内核框住的元素全为1才为1(保留1),否则为0(侵蚀)

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_black.png')

# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 核
# 参数3 侵蚀次数
erode_img = cv2.erode(img, kernel, iterations=1)
cv2.imshow('1', img)
cv2.imshow('2', erode_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

侵蚀后

膨胀

内核在原图上滑动,内核框住的元素只要有1为1(膨胀),否则为0(保留0)

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_black.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 核
# 参数3 膨胀次数
dilate_img = cv2.dilate(img, kernel, iterations=1)
cv2.imshow('1', img)
cv2.imshow('2', dilate_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

膨胀后

开运算

侵蚀+膨胀

先侵蚀后膨胀,用于消除噪声

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_open.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
open_img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel, iterations=1)
# erode_img = cv2.erode(img, kernel, iterations=1)
# open_img = cv2.dilate(erode_img, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', open_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

开运算后

闭运算

膨胀+侵蚀

先膨胀后侵蚀,用于消除图像中小的暗点

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_close.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
close_img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel, iterations=1)
# dilate_img = cv2.dilate(img, kernel, iterations=1)
# close_img = cv2.erode(dilate_img, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', close_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

闭运算后

形态学梯度

原图 - 侵蚀 = 轮廓线

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_black.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
gradient_img = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', gradient_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

梯度后

顶帽运算

原图 - 开运算(侵蚀+膨胀) = 外部噪点

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_open.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
tophat_img = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', tophat_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

顶帽后

黑帽运算

原图 - 闭运算(膨胀+侵蚀) = 内部噪点

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_close.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
blackhat_img = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', blackhat_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

黑帽后

相关推荐
A懿轩A5 分钟前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组
云边有个稻草人9 分钟前
【优选算法】—复写零(双指针算法)
笔记·算法·双指针算法
martian66512 分钟前
【人工智能数学基础篇】——深入详解多变量微积分:在机器学习模型中优化损失函数时应用
人工智能·机器学习·微积分·数学基础
人机与认知实验室1 小时前
人、机、环境中各有其神经网络系统
人工智能·深度学习·神经网络·机器学习
黑色叉腰丶大魔王1 小时前
基于 MATLAB 的图像增强技术分享
图像处理·人工智能·计算机视觉
迅易科技4 小时前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神5 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI6 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长6 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME7 小时前
知识库管理系统可扩展性深度测评
人工智能