形态学笔记:侵蚀+膨胀+开运算+闭运算+形态学梯度+顶帽运算+黑帽运算

形态学

一般在二值图上操作

输入:原图、操作结构内核

简单阈值

对于每个像素,应用相同的阈值。如果像素值小于阈值,则将其设置为0,否则将其设置为最大值

原图-->灰度图-->二值图

python 复制代码
logo = cv2.imread('./fans.jpg')
# 参数1 被转换的图像
# 参数2 原图转为灰度图
logo_gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
# 转为二值图
# 参数1 灰度图
# 参数2 阈值 小于阈值为0
# 参数3 大于阈值为maxval
# 参数4 类型    cv2.THRESH_BINARY   cv2.THRESH_OTSU 会自适应阈值
# retval, logo_binary = cv2.threshold(logo_gray, 100, 255, cv2.THRESH_BINARY)
retval, logo_binary = cv2.threshold(logo_gray, 100, 255, cv2.THRESH_OTSU)

侵蚀

内核在原图上滑动,内核框住的元素全为1才为1(保留1),否则为0(侵蚀)

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_black.png')

# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 核
# 参数3 侵蚀次数
erode_img = cv2.erode(img, kernel, iterations=1)
cv2.imshow('1', img)
cv2.imshow('2', erode_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

侵蚀后

膨胀

内核在原图上滑动,内核框住的元素只要有1为1(膨胀),否则为0(保留0)

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_black.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 核
# 参数3 膨胀次数
dilate_img = cv2.dilate(img, kernel, iterations=1)
cv2.imshow('1', img)
cv2.imshow('2', dilate_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

膨胀后

开运算

侵蚀+膨胀

先侵蚀后膨胀,用于消除噪声

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_open.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
open_img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel, iterations=1)
# erode_img = cv2.erode(img, kernel, iterations=1)
# open_img = cv2.dilate(erode_img, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', open_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

开运算后

闭运算

膨胀+侵蚀

先膨胀后侵蚀,用于消除图像中小的暗点

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_close.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
close_img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel, iterations=1)
# dilate_img = cv2.dilate(img, kernel, iterations=1)
# close_img = cv2.erode(dilate_img, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', close_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

闭运算后

形态学梯度

原图 - 侵蚀 = 轮廓线

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_black.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
gradient_img = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', gradient_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

梯度后

顶帽运算

原图 - 开运算(侵蚀+膨胀) = 外部噪点

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_open.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
tophat_img = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', tophat_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

顶帽后

黑帽运算

原图 - 闭运算(膨胀+侵蚀) = 内部噪点

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_close.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
blackhat_img = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', blackhat_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

黑帽后

相关推荐
小白跃升坊10 小时前
基于1Panel的AI运维
linux·运维·人工智能·ai大模型·教学·ai agent
kicikng10 小时前
走在智能体前沿:智能体来了(西南总部)的AI Agent指挥官与AI调度官实践
人工智能·系统架构·智能体协作·ai agent指挥官·ai调度官·应用层ai
Dfreedom.10 小时前
开运算与闭运算:图像形态学中的“清道夫”与“修复匠”
图像处理·python·opencv·开运算·闭运算
理人综艺好会10 小时前
Web学习之用户认证
前端·学习
测试者家园10 小时前
测试用例智能生成:是效率革命,还是“垃圾进,垃圾出”的新挑战?
人工智能·职场和发展·测试用例·测试策略·质量效能·智能化测试·用例设计
GIS瞧葩菜10 小时前
Cesium 轴拖拽 + 旋转圈拖拽 核心数学知识
人工智能·算法·机器学习
njsgcs10 小时前
dqn和cnn有什么区别 dqn怎么保存训练经验到本地
人工智能·神经网络·cnn
●VON10 小时前
React Native for OpenHarmony:项目目录结构与跨平台构建流程详解
javascript·学习·react native·react.js·架构·跨平台·von
AndrewHZ10 小时前
【AI黑话日日新】什么是AI智能体?
人工智能·算法·语言模型·大模型·llm·ai智能体
跃渊Yuey10 小时前
【Linux】线程同步与互斥
linux·笔记