形态学笔记:侵蚀+膨胀+开运算+闭运算+形态学梯度+顶帽运算+黑帽运算

形态学

一般在二值图上操作

输入:原图、操作结构内核

简单阈值

对于每个像素,应用相同的阈值。如果像素值小于阈值,则将其设置为0,否则将其设置为最大值

原图-->灰度图-->二值图

python 复制代码
logo = cv2.imread('./fans.jpg')
# 参数1 被转换的图像
# 参数2 原图转为灰度图
logo_gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
# 转为二值图
# 参数1 灰度图
# 参数2 阈值 小于阈值为0
# 参数3 大于阈值为maxval
# 参数4 类型    cv2.THRESH_BINARY   cv2.THRESH_OTSU 会自适应阈值
# retval, logo_binary = cv2.threshold(logo_gray, 100, 255, cv2.THRESH_BINARY)
retval, logo_binary = cv2.threshold(logo_gray, 100, 255, cv2.THRESH_OTSU)

侵蚀

内核在原图上滑动,内核框住的元素全为1才为1(保留1),否则为0(侵蚀)

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_black.png')

# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 核
# 参数3 侵蚀次数
erode_img = cv2.erode(img, kernel, iterations=1)
cv2.imshow('1', img)
cv2.imshow('2', erode_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

侵蚀后

膨胀

内核在原图上滑动,内核框住的元素只要有1为1(膨胀),否则为0(保留0)

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_black.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 核
# 参数3 膨胀次数
dilate_img = cv2.dilate(img, kernel, iterations=1)
cv2.imshow('1', img)
cv2.imshow('2', dilate_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

膨胀后

开运算

侵蚀+膨胀

先侵蚀后膨胀,用于消除噪声

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_open.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
open_img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel, iterations=1)
# erode_img = cv2.erode(img, kernel, iterations=1)
# open_img = cv2.dilate(erode_img, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', open_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

开运算后

闭运算

膨胀+侵蚀

先膨胀后侵蚀,用于消除图像中小的暗点

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_close.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
close_img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel, iterations=1)
# dilate_img = cv2.dilate(img, kernel, iterations=1)
# close_img = cv2.erode(dilate_img, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', close_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

闭运算后

形态学梯度

原图 - 侵蚀 = 轮廓线

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_black.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
gradient_img = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', gradient_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

梯度后

顶帽运算

原图 - 开运算(侵蚀+膨胀) = 外部噪点

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_open.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
tophat_img = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', tophat_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

顶帽后

黑帽运算

原图 - 闭运算(膨胀+侵蚀) = 内部噪点

python 复制代码
import cv2
import numpy as np

img = cv2.imread('./imgs/py_close.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
blackhat_img = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', blackhat_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

黑帽后

相关推荐
数据堂官方账号1 小时前
AI赋能工业4.0:数据堂一站式数据服务加速制造智能化落地
人工智能·机器人·数据集·人机交互·数据采集·数据标注·工业制造
老赵聊算法、大模型备案1 小时前
2025 年 12 月北京市生成式人工智能服务备案分析:政务场景再扩容,合规生态更聚焦
人工智能·算法·microsoft·aigc·政务
炽烈小老头2 小时前
【每天学习一点算法 2025/12/15】环形链表
学习·算法·链表
Rabbit_QL2 小时前
【PyTorch】detach:从计算图中切断梯度的原理与实践
人工智能·pytorch·python
测试人社区-小明2 小时前
智能测试误报问题的深度解析与应对策略
人工智能·opencv·线性代数·微服务·矩阵·架构·数据挖掘
阿达_优阅达2 小时前
Tableau 2025.3 发布!可视化扩展升级、Server 版 Agent、平台数据 API,让 AI 深度融入业务工作流
人工智能·ai·数据分析·数据可视化·仪表板·tableau·版本更新
春日见2 小时前
基于深度学习的机械臂抓取
人工智能
希艾席帝恩2 小时前
数字孪生如何重塑现代制造体系?
大数据·人工智能·数字孪生·数据可视化·数字化转型
浔川python社2 小时前
关于浔川 AI 翻译项目推进建议的公告
人工智能