pytorch中的可学习查找表实现之nn.Embedding

假设我们需要一个查找表(Lookup Table),我们可以根据索引数字快速定位查找表中某个具体位置并读取出来。最简单的方法,可以通过一个二维数组或者二维list来实现。但如果我希望查找表的值可以通过梯度反向传播来修改,那么就需要用到nn.Embedding来实现了。

其实,我们需要用反向传播来修正表值的场景还是很多的,比如我们想存储数据的通用特征时,这个通用特征就可以用nn.Embedding来表示,常见于现在的各种codebook的trick。闲话不多说,我们来看栗子:

python 复制代码
import torch
from torch import nn

table = nn.Embedding(10, 3)
print(table.weight)
idx = torch.LongTensor([[1]])
b = table(idx)
print(b)

'''
output
Parameter containing:
tensor([[-0.2317, -0.9679, -1.9324],
        [ 0.2473,  1.1043, -0.7218],
        [ 0.5425, -0.3109, -0.1330],
        [-1.4006, -0.0675,  0.1376],
        [-0.1995,  0.7168,  0.5692],
        [-1.3572, -0.6407, -0.0128],
        [-0.0773,  1.1928, -1.0836],
        [ 0.1721, -0.9232, -0.4059],
        [ 1.6108, -0.4640,  0.3535],
        [ 0.6975,  1.6554, -0.2217]], requires_grad=True)
tensor([[[ 0.2473,  1.1043, -0.7218]]], grad_fn=<EmbeddingBackward0>)
'''

这段代码实际上就实现了一个查找表的功能,索引值为[[1]](注意有两个中括弧),返回值为对应的表值。我们还可以批量查找表值:

python 复制代码
import torch
from torch import nn

table = nn.Embedding(10, 3)
print(table)
print(table.weight)

indices = torch.LongTensor([[1,2,4,5],[4,3,2,9]])
print(indices)

out = table(indices)
print(out)
print(out.shape)

通过输入索引张量来获取表值:[2,4] -> [2,4,3],请注意这个shape变化,即对应位置的索引获得对应位置的表值。

参考:https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

本人亲自整理,有问题可留言交流~

相关推荐
IT古董14 分钟前
【第三章:神经网络原理详解与Pytorch入门】02.深度学习框架PyTorch入门-(5)PyTorch 实战——使用 RNN 进行人名分类
pytorch·深度学习·神经网络
机器学习之心2 小时前
小波增强型KAN网络 + SHAP可解释性分析(Pytorch实现)
人工智能·pytorch·python·kan网络
Green1Leaves8 小时前
pytorch学习-11卷积神经网络(高级篇)
pytorch·学习·cnn
灵智工坊LingzhiAI10 小时前
人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
人工智能·pytorch·python
William.csj1 天前
Pytorch/CUDA——flash-attn 库编译的 gcc 版本问题
pytorch·cuda
Green1Leaves2 天前
pytorch学习-9.多分类问题
人工智能·pytorch·学习
摸爬滚打李上进2 天前
重生学AI第十六集:线性层nn.Linear
人工智能·pytorch·python·神经网络·机器学习
HuashuiMu花水木2 天前
PyTorch笔记1----------Tensor(张量):基本概念、创建、属性、算数运算
人工智能·pytorch·笔记
喝过期的拉菲3 天前
如何使用 Pytorch Lightning 启用早停机制
pytorch·lightning·早停机制
kk爱闹3 天前
【挑战14天学完python和pytorch】- day01
android·pytorch·python