pytorch中的可学习查找表实现之nn.Embedding

假设我们需要一个查找表(Lookup Table),我们可以根据索引数字快速定位查找表中某个具体位置并读取出来。最简单的方法,可以通过一个二维数组或者二维list来实现。但如果我希望查找表的值可以通过梯度反向传播来修改,那么就需要用到nn.Embedding来实现了。

其实,我们需要用反向传播来修正表值的场景还是很多的,比如我们想存储数据的通用特征时,这个通用特征就可以用nn.Embedding来表示,常见于现在的各种codebook的trick。闲话不多说,我们来看栗子:

python 复制代码
import torch
from torch import nn

table = nn.Embedding(10, 3)
print(table.weight)
idx = torch.LongTensor([[1]])
b = table(idx)
print(b)

'''
output
Parameter containing:
tensor([[-0.2317, -0.9679, -1.9324],
        [ 0.2473,  1.1043, -0.7218],
        [ 0.5425, -0.3109, -0.1330],
        [-1.4006, -0.0675,  0.1376],
        [-0.1995,  0.7168,  0.5692],
        [-1.3572, -0.6407, -0.0128],
        [-0.0773,  1.1928, -1.0836],
        [ 0.1721, -0.9232, -0.4059],
        [ 1.6108, -0.4640,  0.3535],
        [ 0.6975,  1.6554, -0.2217]], requires_grad=True)
tensor([[[ 0.2473,  1.1043, -0.7218]]], grad_fn=<EmbeddingBackward0>)
'''

这段代码实际上就实现了一个查找表的功能,索引值为[[1]](注意有两个中括弧),返回值为对应的表值。我们还可以批量查找表值:

python 复制代码
import torch
from torch import nn

table = nn.Embedding(10, 3)
print(table)
print(table.weight)

indices = torch.LongTensor([[1,2,4,5],[4,3,2,9]])
print(indices)

out = table(indices)
print(out)
print(out.shape)

通过输入索引张量来获取表值:[2,4] -> [2,4,3],请注意这个shape变化,即对应位置的索引获得对应位置的表值。

参考:https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

本人亲自整理,有问题可留言交流~

相关推荐
小程故事多_801 天前
开源界核弹级输出!蚂蚁 Agentar-Scale-SQL 凭 “编排式扩展” 技术,成为 Text-to-SQL 天花板
数据库·人工智能·sql·开源·aigc·embedding
IT老兵20251 天前
PyTorch DDP多GPU训练实践问题总结
人工智能·pytorch·python·分布式训练·ddp
Blossom.1181 天前
基于图神经网络+大模型的网络安全APT检测系统:从流量日志到攻击链溯源的实战落地
人工智能·分布式·深度学习·安全·web安全·开源软件·embedding
All The Way North-1 天前
AdaGrad 深度解析:从数学原理到 PyTorch 实现,为什么它在稠密问题中“学不动”?
pytorch·深度学习·adagrad算法·梯度下降优化算法
丝瓜蛋汤1 天前
Conan-embedding整理
人工智能·embedding
keineahnung23451 天前
從 SymBool 到 SymFloat:PyTorch user magic methods 如何支持符號形狀運算?
人工智能·pytorch·python·深度学习
Rabbit_QL2 天前
【PyTorch】detach:从计算图中切断梯度的原理与实践
人工智能·pytorch·python
FrameNotWork2 天前
HarmonyOS 教学实战:从 0 写一个完整应用(真正能跑、能扩展)
pytorch·华为·harmonyos
Mr.Lee jack2 天前
【torch.compile】TorchDynamo 源码深度剖析
pytorch
Keep_Trying_Go2 天前
统一的人群计数训练框架(PyTorch)——基于主流的密度图模型训练框架
人工智能·pytorch·python·深度学习·算法·机器学习·人群计数