基于yolov5.7.0的人工智能算法的下载、开发环境搭建(pycharm)与运行测试

(一)Yolov5的下载与解压

1、在yolov5的官方下载7.0的版本的yolov5的源码,如下所示:

https://github.com/ultralytics/yolov5/tags

图1 yolov5软件包下载

2、拷贝yolov5.7源码压缩包到工作目录,并解压,如下所示:
图2 yolov5源码解压5

(二)Yolov5.7的开发环境搭建(pycharm)

1、使用pycharm打开yolov5.7的解压目录文件,如下所示:
图3 pycharm打开yolov5.7.0的文件夹 图4 pycharm打开yolov5工程首页

2、Pycharm配置python3.8的解释器环境,如下图所示:


图5 Pycharm的Python解释器环境的配置

3、拷贝下载的Pytorch(V1.9)和torchvision(V0.10.0)的离线软件安装包到工作目录如下图所示:
图6 拷贝离线安装包到工作目录

4、进入pycharm的终端,分别进行torch和torchvision离线安装包的安装,具体流程如下所述:

https://github.com/ultralytics/yolov5/tags

pip install "torch-1.9.0+cpu-cp38-cp38-win_amd64.whl"
图7 离线安装pytorch V1.9.0版本

pip install "torchvision-0.10.0+cpu-cp38-cp38-win_amd64.whl"
图8 离线安装torchvision V0.10.0版本

5、进入yolov5.7.0的工程目录,运行如下指令进行yolov5的官方要求环境搭建(注意:保持计算机连接网络)。
图9 在线安装yolov5.7.0的官方软件依赖包

(三)Yolov5.7的yolov5s模型的测试

1、打开yolov5.7.0工程目录下的detect.py文件,运行该python文件(注意:首次运行,需要计算机连接互联网,下载yolov5s.pt的权重模型),如下图所示:
图10 运行yolov5.7.0的detect.py程序 图11 detect.py程序运行过程 图12 yolov5.7.0默认使用coco数据识别的结果

相关推荐
endcy20161 小时前
基于Spring AI的RAG和智能体应用实践
人工智能·ai·系统架构
Blossom.1182 小时前
移动端部署噩梦终结者:动态稀疏视觉Transformer的量化实战
java·人工智能·python·深度学习·算法·机器学习·transformer
FPGA小迷弟2 小时前
ChatGPT回答用AI怎么怎么赚钱
大数据·人工智能
轻微的风格艾丝凡2 小时前
卷积的直观理解
人工智能·深度学习·神经网络·算法·计算机视觉·matlab·cnn
AiXed2 小时前
PC微信协议之AES-192-GCM算法
前端·数据库·python
月下倩影时2 小时前
视觉进阶篇——机器学习训练过程(手写数字识别,量大管饱需要耐心)
人工智能·学习·机器学习
PixelMind2 小时前
【超分辨率专题】HYPIR:扩散模型先验与 GAN 对抗训练相结合的新型图像复原框架
人工智能·生成对抗网络·扩散模型·图像复原
灵光通码3 小时前
神经网络基本概念
python·神经网络
说私域3 小时前
从裂变能力竞争到技术水平竞争:开源AI智能名片链动2+1模式S2B2C商城小程序对微商企业竞争格局的重塑
人工智能·小程序·开源
xybDIY3 小时前
基于 Tuya.AI 开源的大模型构建智能聊天机器人
人工智能·机器人·开源