基于yolov5.7.0的人工智能算法的下载、开发环境搭建(pycharm)与运行测试

(一)Yolov5的下载与解压

1、在yolov5的官方下载7.0的版本的yolov5的源码,如下所示:

https://github.com/ultralytics/yolov5/tags

图1 yolov5软件包下载

2、拷贝yolov5.7源码压缩包到工作目录,并解压,如下所示:
图2 yolov5源码解压5

(二)Yolov5.7的开发环境搭建(pycharm)

1、使用pycharm打开yolov5.7的解压目录文件,如下所示:
图3 pycharm打开yolov5.7.0的文件夹 图4 pycharm打开yolov5工程首页

2、Pycharm配置python3.8的解释器环境,如下图所示:


图5 Pycharm的Python解释器环境的配置

3、拷贝下载的Pytorch(V1.9)和torchvision(V0.10.0)的离线软件安装包到工作目录如下图所示:
图6 拷贝离线安装包到工作目录

4、进入pycharm的终端,分别进行torch和torchvision离线安装包的安装,具体流程如下所述:

https://github.com/ultralytics/yolov5/tags

pip install "torch-1.9.0+cpu-cp38-cp38-win_amd64.whl"
图7 离线安装pytorch V1.9.0版本

pip install "torchvision-0.10.0+cpu-cp38-cp38-win_amd64.whl"
图8 离线安装torchvision V0.10.0版本

5、进入yolov5.7.0的工程目录,运行如下指令进行yolov5的官方要求环境搭建(注意:保持计算机连接网络)。
图9 在线安装yolov5.7.0的官方软件依赖包

(三)Yolov5.7的yolov5s模型的测试

1、打开yolov5.7.0工程目录下的detect.py文件,运行该python文件(注意:首次运行,需要计算机连接互联网,下载yolov5s.pt的权重模型),如下图所示:
图10 运行yolov5.7.0的detect.py程序 图11 detect.py程序运行过程 图12 yolov5.7.0默认使用coco数据识别的结果

相关推荐
张拭心8 分钟前
Cursor 又偷偷更新,这个功能太实用:Visual Editor for Cursor Browser
前端·人工智能
吴佳浩40 分钟前
大模型 MoE,你明白了么?
人工智能·llm
这个人懒得名字都没写2 小时前
Python包管理新纪元:uv
python·conda·pip·uv
有泽改之_2 小时前
leetcode146、OrderedDict与lru_cache
python·leetcode·链表
Blossom.1182 小时前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
是毛毛吧2 小时前
边打游戏边学Python的5个开源项目
python·开源·github·开源软件·pygame
t198751282 小时前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技2 小时前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
mqiqe2 小时前
vLLM(vLLM.ai)生产环境部署大模型
人工智能·vllm
V1ncent Chen2 小时前
机器是如何“洞察“世界的?:深度学习
人工智能·深度学习