【自动驾驶】自动驾驶地图构建方法与工具小结

自动驾驶地图构建小结

概述

制作流程主要利用定位与建图算法(组合导航,视觉、激光SLAM等),融合多种传感器数据,构建高精度、高分辨率的三维语义地图,将要素矢量化,构建要素间的关联关系,通过质检确保质量可靠,形成地图引擎(服务、API)以满足自动驾驶系统的需求。

底图构建

底图构建存在两大类方法,点云建图与视觉建图。

点云建图

一般面向高精度采集设备,采用高线束激光雷达,硬件成本高。

一般使用高精度组合导航进行点云拼接,多次采集同一环境需要进行多次点云的融合处理,如使用特征约束抑制点云发散。

目前,存在较多的开源方案实现了多传感器紧耦合的点云定位与建图。

视觉建图

参考Structure from Motion与Bundle Adjustment方法,易于处理重复采集问题,也常用于众包更新。

上述两种方法面对城市峡谷、隧道、高架桥下组合导航精度下降的场景,需要采用视觉或点云观测紧耦合IMU\GPS以提升定位和建图精度。

底图标注

手动标注

以Autocore Map Toolbox为例,流程如下(参考视频https://www.youtube.com/watch?v=WTRHPs8pN04)

a. 新建Unity工程,加入Map Toolbox插件

b. 导入点云PCD文件

c. 手动标准

d. 结果导出为矢量地图,osm格式(参考OpenStreetMap介绍)

自动标注

流程大致如下:

a. 路面提取

b. 路面要素提取(陆沿、车道线、路面标识、停止线、斑马线等)、非路面要素提取(交通标牌、红绿灯、路灯及灯杆)

c. 采用视觉检测补充点云中缺失的要素,需要已知相机内参、相机-LiDAR外参,作2D反投影3D提取要素

d. 对线段进行曲线拟合,同一要素内线段排序,连接端点,完成矢量化

e. 添加语义,添加语义及车道的关联关系,构建地图索引和数据存储,生成高精地图数据文件

f. 人工修补

g.人工质检

标注方法

无论自动标注或者手工标注的方法,均需标注软件,因为机器算法无法做到百分之百,而且实际道路由于路标遮挡、磨损等原因,都需用标注软件手工修正。

一个功能强大的标注软件是高精地图生产必不可少的一部分。

工具软件

名称 支持格式 商业
LGSVL Map Annotation Apollo OpenDrive、OpenDrive、VectorMap、Lanelet2 免费
Assure Mapping Tools Google Earth、KML、Opendrive、Lanelet2、Vector Map 免费
AutoCore MapToolBox Lanelet2 免费
RoadRunner OpenDrive 付费
相关推荐
Juchecar1 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai1 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI2 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear3 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp
小气小憩4 小时前
“暗战”百度搜索页:Monica悬浮球被“围剿”,一场AI Agent与传统巨头的流量攻防战
前端·人工智能
神经星星4 小时前
准确度提升400%!印度季风预测模型基于36个气象站点,实现城区尺度精细预报
人工智能
IT_陈寒6 小时前
JavaScript 性能优化:5 个被低估的 V8 引擎技巧让你的代码快 200%
前端·人工智能·后端
Juchecar7 小时前
一文讲清 PyTorch 中反向传播(Backpropagation)的实现原理
人工智能
黎燃7 小时前
游戏NPC的智能行为设计:从规则驱动到强化学习的演进
人工智能
机器之心7 小时前
高阶程序,让AI从技术可行到商业可信的最后一公里
人工智能·openai