【自动驾驶】自动驾驶地图构建方法与工具小结

自动驾驶地图构建小结

概述

制作流程主要利用定位与建图算法(组合导航,视觉、激光SLAM等),融合多种传感器数据,构建高精度、高分辨率的三维语义地图,将要素矢量化,构建要素间的关联关系,通过质检确保质量可靠,形成地图引擎(服务、API)以满足自动驾驶系统的需求。

底图构建

底图构建存在两大类方法,点云建图与视觉建图。

点云建图

一般面向高精度采集设备,采用高线束激光雷达,硬件成本高。

一般使用高精度组合导航进行点云拼接,多次采集同一环境需要进行多次点云的融合处理,如使用特征约束抑制点云发散。

目前,存在较多的开源方案实现了多传感器紧耦合的点云定位与建图。

视觉建图

参考Structure from Motion与Bundle Adjustment方法,易于处理重复采集问题,也常用于众包更新。

上述两种方法面对城市峡谷、隧道、高架桥下组合导航精度下降的场景,需要采用视觉或点云观测紧耦合IMU\GPS以提升定位和建图精度。

底图标注

手动标注

以Autocore Map Toolbox为例,流程如下(参考视频https://www.youtube.com/watch?v=WTRHPs8pN04)

a. 新建Unity工程,加入Map Toolbox插件

b. 导入点云PCD文件

c. 手动标准

d. 结果导出为矢量地图,osm格式(参考OpenStreetMap介绍)

自动标注

流程大致如下:

a. 路面提取

b. 路面要素提取(陆沿、车道线、路面标识、停止线、斑马线等)、非路面要素提取(交通标牌、红绿灯、路灯及灯杆)

c. 采用视觉检测补充点云中缺失的要素,需要已知相机内参、相机-LiDAR外参,作2D反投影3D提取要素

d. 对线段进行曲线拟合,同一要素内线段排序,连接端点,完成矢量化

e. 添加语义,添加语义及车道的关联关系,构建地图索引和数据存储,生成高精地图数据文件

f. 人工修补

g.人工质检

标注方法

无论自动标注或者手工标注的方法,均需标注软件,因为机器算法无法做到百分之百,而且实际道路由于路标遮挡、磨损等原因,都需用标注软件手工修正。

一个功能强大的标注软件是高精地图生产必不可少的一部分。

工具软件

名称 支持格式 商业
LGSVL Map Annotation Apollo OpenDrive、OpenDrive、VectorMap、Lanelet2 免费
Assure Mapping Tools Google Earth、KML、Opendrive、Lanelet2、Vector Map 免费
AutoCore MapToolBox Lanelet2 免费
RoadRunner OpenDrive 付费
相关推荐
中杯可乐多加冰20 小时前
逻辑控制案例详解|基于smardaten实现OA一体化办公系统逻辑交互
人工智能·深度学习·低代码·oa办公·无代码·一体化平台·逻辑控制
IT_陈寒21 小时前
Redis实战:5个高频应用场景下的性能优化技巧,让你的QPS提升50%
前端·人工智能·后端
龙智DevSecOps解决方案21 小时前
Perforce《2025游戏技术现状报告》Part 1:游戏引擎技术的广泛影响以及生成式AI的成熟之路
人工智能·unity·游戏引擎·游戏开发·perforce
大佬,救命!!!21 小时前
更换适配python版本直接进行机器学习深度学习等相关环境配置(非仿真环境)
人工智能·python·深度学习·机器学习·学习笔记·详细配置
星空的资源小屋21 小时前
VNote:程序员必备Markdown笔记神器
javascript·人工智能·笔记·django
梵得儿SHI21 小时前
(第七篇)Spring AI 基础入门总结:四层技术栈全景图 + 三大坑根治方案 + RAG 进阶预告
java·人工智能·spring·springai的四大核心能力·向量维度·prompt模板化·向量存储检索
亚马逊云开发者21 小时前
Amazon Bedrock助力飞书深诺电商广告分类
人工智能
2301_8234380221 小时前
解析论文《复杂海上救援环境中无人机群的双阶段协作路径规划与任务分配》
人工智能·算法·无人机
无心水1 天前
【Python实战进阶】4、Python字典与集合深度解析
开发语言·人工智能·python·python字典·python集合·python实战进阶·python工业化实战进阶
励志成为糕手1 天前
循环神经网络(RNN):时序数据的深度学习模型
人工智能·rnn·深度学习·gru·lstm