08 OpenCV 腐蚀和膨胀

文章目录

作用

膨胀与腐蚀是数学形态学在图像处理中最基础的操作。其卷积操作非常简单,对于图像的每个像素,取其一定的邻域,计算最大值/最小值作为新图像对应像素位置的像素值。其中,取最大值就是膨胀,取最小值就是腐蚀。膨胀与腐蚀能实现多种多样的功能,主要如下:

  • 消除噪声
  • 分割出独立的图像元素,在图像中连接相邻的元素。
  • 寻找图像中的明显的极大值区域或极小值区域
  • 求出图像的梯度
    图像梯度计算的是图像变化的速度

算子

膨胀算子

膨胀操作是取每个位置领域内最大值,所以膨胀后输出图像的总体亮度的平均值比起原图会有所升高,图像中比较亮的区域的面积会变大,而较暗物体的尺寸会减小甚至消失。(增加高亮部分)

c 复制代码
void dilate( InputArray src, OutputArray dst, InputArray kernel,Point anchor = Point(-1,-1), int iterations = 1,int borderType = BORDER_CONSTANT,const Scalar& borderValue = morphologyDefaultBorderValue() );
/*******************************************************************
*			src: 					输入图像
*			dst:					输出图像
*			kernel:					膨胀操作的核
*					参数为0:中心3*3的核
*			anchor:					锚点
*					(-1,-1):表示位于中心
*			iterations:				 迭代的次数
*			borderType:				 图像外部像素的某种边界模式
*			borderValue:			 边界值,一般不管
*********************************************************************/

腐蚀算子

膨胀和腐蚀是一对好基友,是相反的一对操作,所以腐蚀就是求局部最小值的操作。(减少高亮部分)

c 复制代码
void erode( InputArray src, OutputArray dst, InputArray kernel,Point anchor = Point(-1,-1), int iterations = 1,int borderType = BORDER_CONSTANT,const Scalar& borderValue = morphologyDefaultBorderValue() );
/*******************************************************************
*			src: 					输入图像
*			dst:					输出图像
*			kernel:					 腐蚀操作的核
*					参数为0:中心3*3的核
*			anchor:					锚点
*					(-1,-1):表示位于中心
*			iterations:				 迭代的次数
*			borderType:				 断图像外部像素的某种边界模式
*			borderValue:			 边界值,一般不管
*********************************************************************/

获取结构元素

getStructuringElement函数可用于构造一个特定大小和形状的结构元素,用于图像形态学处理

c 复制代码
Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1));
/*******************************************************************
*			shape: 					形状类型
*			ksize:					大小
*			anchor:					锚点
*					(-1,-1):表示位于中心
*********************************************************************/
//shape取值
enum MorphShapes {
    MORPH_RECT    = 0, //矩形
    MORPH_CROSS   = 1, //十字交叉
    MORPH_ELLIPSE = 2  //椭圆                   
};

轨迹条算子

c 复制代码
createTrackbar("Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold);
/*
 * "Min Threshold": trackbar的名字
 * window_name: 显示图片的窗口的名字
 * &lowThreshold: trackbar改变的参数的地址
 * max_lowThreshold: trackbar所改变的参数的最大值
 * CannyThreshold: 回调函数,当用户通过trackbar改变参数值时会调用一次此回调函数
 * 此回调函数中的参数均为全局变量 故所有地方均可以调用
	*/

代码

c 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;

Mat src, dst;
char OUTPUT_WIN[] = "output image";
int element_size = 1;
int max_size = 21;
void CallBack_Demo(int, void*);
int main()
{
	src = imread("test.jpg");//读取图片
	if (src.empty())
	{
		cout << "could not load img...";
		return -1;
	}
	namedWindow("test");//设置窗口名称
	imshow("test", src);

	namedWindow(OUTPUT_WIN);
	createTrackbar("Element Size :", OUTPUT_WIN, &element_size, max_size, CallBack_Demo);
	CallBack_Demo(0, 0);

	waitKey(0);
	return 0;
}

void CallBack_Demo(int, void*)
{
	int s = element_size  + 1;
	Mat structureElement = getStructuringElement(MORPH_RECT, Size(s, s), Point(-1, -1));
	dilate(src, dst, structureElement, Point(-1, -1), 1);
	//erode(src, dst, structureElement);
	imshow(OUTPUT_WIN, dst);
}
相关推荐
小鸡吃米…5 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫6 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)6 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
saoys6 小时前
Opencv 学习笔记:图像掩膜操作(精准提取指定区域像素)
笔记·opencv·学习
minhuan6 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维6 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS6 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd6 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟7 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然7 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析