Pytorch_1_基本语法

一、Pytorch的基本元素操作

1.引入torch

复制代码
from __future__ import print_function
import torch

2.创建矩阵

复制代码
x = torch.empty(5,3)
print(x)

3.输出结果:

tensor([[7.9191e+34, 1.1259e+24, 1.2359e-42],

4.0824e-40, 1.1379e-35, 2.5353e+30\], \[8.4078e-45, 2.6709e-42, 7.7558e-40\], \[2.9130e-33, 2.5353e+30, 9.6690e-44\], \[7.5524e+28, 5.2839e-11, 1.3458e-14\]\])

4.指定一个全零矩阵并可指定数据元素的类型为long

复制代码
x = torch.zeros(5,3, dtype=torch.long)
print(x)

5.输出结果

tensor([[0, 0, 0],

0, 0, 0\], \[0, 0, 0\], \[0, 0, 0\], \[0, 0, 0\]\])

未完待续。。。

相关推荐
脑海科技实验室2 分钟前
Nature子刊:新研究!人工智能提供更清晰的功能MRI脑数据
人工智能·fmri
qyr678918 分钟前
便携式太阳能折叠板市场白皮书与未来趋势展望
大数据·人工智能·物联网·市场分析·市场报告·便携式太阳能折叠板·太阳能折叠板
yunhuibin31 分钟前
AlexNet网络学习
人工智能·python·深度学习·神经网络
肾透侧视攻城狮1 小时前
《从fit()到分布式训练:深度解锁TensorFlow模型训练全栈技能》
人工智能·深度学习·tensorflow 模型训练·模型训练中的fit方法·自定义训练循环·回调函数使用·混合精度/分布式训练
索木木1 小时前
大模型训练CP切分(与TP、SP结合)
人工智能·深度学习·机器学习·大模型·训练·cp·切分
喵手1 小时前
Python爬虫实战:增量爬虫实战 - 利用 HTTP 缓存机制实现“极致减负”(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·增量爬虫·http缓存机制·极致减负
DevilSeagull2 小时前
C语言: 动态内存管理
人工智能·语言模型·自然语言处理
一个处女座的程序猿O(∩_∩)O2 小时前
Python异常处理完全指南:KeyError、TypeError、ValueError深度解析
开发语言·python
was1722 小时前
使用 Python 脚本一键上传图片到兰空图床并自动复制链接
python·api上传·自建图床·一键脚本
破晓之翼2 小时前
从第一性原理和工程控制论角度企业去思考AI开发避免完美主义陷阱
人工智能