【Hadoop】在spark读取clickhouse中数据

  • 读取clickhouse数据库数据

    scala 复制代码
    import scala.collection.mutable.ArrayBuffer
    import java.util.Properties
    import org.apache.spark.sql.SaveMode
    import org.apache.spark.sql.SparkSession
    
    def getCKJdbcProperties(
                               batchSize: String = "100000",
                               socketTimeout: String = "300000",
                               numPartitions: String = "50",
                               rewriteBatchedStatements: String = "true"): Properties = {
        val properties = new Properties
        properties.put("driver", "ru.yandex.clickhouse.ClickHouseDriver")
        properties.put("user", "default")
        properties.put("password", "数据库密码")
        properties.put("batchsize", batchSize)
        properties.put("socket_timeout", socketTimeout)
        properties.put("numPartitions", numPartitions)
        properties.put("rewriteBatchedStatements", rewriteBatchedStatements)
        properties
      }
    // 读取click数据库数据
    val today = "2023-06-05"
    val ckProperties = getCKJdbcProperties()
    val ckUrl = "jdbc:clickhouse://233.233.233.233:8123/ss"
    val ckTable = "ss.test"
    var ckDF = spark.read.jdbc(ckUrl, ckTable, ckProperties)
  • **show** 展示数据,类似于select * from test的功能

    1. [ckDF.show](http://ckDF.show) 默认展示前20个记录
    2. ckDF.show(3) 指定展示记录数
    3. ckDF.show(false) 是否展示前20个
    4. ckDF.show(3, 0) 截取记录数
  • **ckDF.collect** 方法会将 ckDF中的所有数据都获取到,并返回一个Array对象

  • ckDF.collectAsList 功能和collect类似,只不过将返回结构变成了List对象

  • **ckDF.describe**("ip_src").show(3) ****获取指定字段的统计信息

    scala 复制代码
    scala> ckDF.describe("ip_src").show(3)
    +-------+------+                                                                
    |summary|ip_src|
    +-------+------+
    |  count|855035|
    |   mean|  null|
    | stddev|  null|
    +-------+------+
    only showing top 3 rows
  • first, head, take, takeAsList 获取若干行记录

    1. first获取第一行记录
    2. head获取第一行记录,head(n: Int)获取前n行记录
    3. take(n: Int)获取前n行数据
    4. takeAsList(n: Int)获取前n行数据,并以List的形式展现

    Row或者Array[Row]的形式返回一行或多行数据。firsthead功能相同。taketakeAsList方法会将获得到的数据返回到Driver端,所以,使用这两个方法时需要注意数据量,以免Driver发生OutOfMemoryError

相关推荐
有梦想有行动11 小时前
ClickHouse的Partition和Part概念
linux·数据库·clickhouse
Francek Chen13 小时前
【大数据基础】大数据处理架构Hadoop:02 Hadoop生态系统
大数据·hadoop·分布式·hdfs·架构
l1t14 小时前
利用DeepSeek辅助翻译clickhouse SQL为DuckDB 格式求解Advent of Code 2025第10题 电子工厂 第二部分
数据库·人工智能·sql·clickhouse·duckdb
l1t14 小时前
对clickhouse给出的二分法求解Advent of Code 2025第10题 电子工厂 第二部分的算法理解
数据库·算法·clickhouse
麦聪聊数据14 小时前
基于SQL+CDC构建MySQL到ClickHouse的实时链路
sql·mysql·clickhouse
Thomas214314 小时前
spark view永久保存 + paimon对应的view
大数据·分布式·spark
zhixingheyi_tian15 小时前
Hadoop 之 行业生态
hadoop
徐先生 @_@|||15 小时前
大数据技术演进(从传统Hadoop到Spark到云原生的技术演进路径)
大数据·hadoop·spark
petrel201515 小时前
【Spark 核心内参】2025.10:从 Parquet 谓词下推的“度”到语义建模的“野心”
大数据·spark
查士丁尼·绵1 天前
hadoop集群存算分离
hive·hdfs·zookeeper·spark·hbase·yarn·galera