【Hadoop】在spark读取clickhouse中数据

  • 读取clickhouse数据库数据

    scala 复制代码
    import scala.collection.mutable.ArrayBuffer
    import java.util.Properties
    import org.apache.spark.sql.SaveMode
    import org.apache.spark.sql.SparkSession
    
    def getCKJdbcProperties(
                               batchSize: String = "100000",
                               socketTimeout: String = "300000",
                               numPartitions: String = "50",
                               rewriteBatchedStatements: String = "true"): Properties = {
        val properties = new Properties
        properties.put("driver", "ru.yandex.clickhouse.ClickHouseDriver")
        properties.put("user", "default")
        properties.put("password", "数据库密码")
        properties.put("batchsize", batchSize)
        properties.put("socket_timeout", socketTimeout)
        properties.put("numPartitions", numPartitions)
        properties.put("rewriteBatchedStatements", rewriteBatchedStatements)
        properties
      }
    // 读取click数据库数据
    val today = "2023-06-05"
    val ckProperties = getCKJdbcProperties()
    val ckUrl = "jdbc:clickhouse://233.233.233.233:8123/ss"
    val ckTable = "ss.test"
    var ckDF = spark.read.jdbc(ckUrl, ckTable, ckProperties)
  • **show** 展示数据,类似于select * from test的功能

    1. [ckDF.show](http://ckDF.show) 默认展示前20个记录
    2. ckDF.show(3) 指定展示记录数
    3. ckDF.show(false) 是否展示前20个
    4. ckDF.show(3, 0) 截取记录数
  • **ckDF.collect** 方法会将 ckDF中的所有数据都获取到,并返回一个Array对象

  • ckDF.collectAsList 功能和collect类似,只不过将返回结构变成了List对象

  • **ckDF.describe**("ip_src").show(3) ****获取指定字段的统计信息

    scala 复制代码
    scala> ckDF.describe("ip_src").show(3)
    +-------+------+                                                                
    |summary|ip_src|
    +-------+------+
    |  count|855035|
    |   mean|  null|
    | stddev|  null|
    +-------+------+
    only showing top 3 rows
  • first, head, take, takeAsList 获取若干行记录

    1. first获取第一行记录
    2. head获取第一行记录,head(n: Int)获取前n行记录
    3. take(n: Int)获取前n行数据
    4. takeAsList(n: Int)获取前n行数据,并以List的形式展现

    Row或者Array[Row]的形式返回一行或多行数据。firsthead功能相同。taketakeAsList方法会将获得到的数据返回到Driver端,所以,使用这两个方法时需要注意数据量,以免Driver发生OutOfMemoryError

相关推荐
FYKJ_20106 小时前
springboot大学校园论坛管理系统--附源码42669
java·javascript·spring boot·python·spark·django·php
小邓睡不饱耶2 天前
Hadoop 3.x 企业级实战指南:从纠删码到云原生容器化
大数据·hadoop·云原生
鸿乃江边鸟3 天前
Spark Datafusion Comet 向量化Rust Native--Native算子ScanExec以及涉及到的Selection Vectors
大数据·rust·spark·arrow
派可数据BI可视化3 天前
一文读懂系列:数据仓库为什么分层,分几层?数仓建模方法有哪些
大数据·数据仓库·信息可视化·spark·商业智能bi
码字的字节3 天前
锚点模型:数据仓库中的高度可扩展建模技术详解
大数据·数据仓库·spark
数据知道4 天前
PostgreSQL:详解 PostgreSQL 与Hadoop与Spark的集成
hadoop·postgresql·spark
Francek Chen4 天前
【大数据存储与管理】分布式文件系统HDFS:03 HDFS的相关概念
大数据·hadoop·分布式·hdfs
Timer_Cooker5 天前
Hive Sum(null)编译报错分析
数据仓库·hive·hadoop
之歆6 天前
Hadoop MapReduce 详解
大数据·hadoop·mapreduce
鸿乃江边鸟6 天前
Spark Datafusion Comet 向量化Rust Native--Native算子指标如何传递到Spark UI上展示
rust·spark·native