【Hadoop】在spark读取clickhouse中数据

  • 读取clickhouse数据库数据

    scala 复制代码
    import scala.collection.mutable.ArrayBuffer
    import java.util.Properties
    import org.apache.spark.sql.SaveMode
    import org.apache.spark.sql.SparkSession
    
    def getCKJdbcProperties(
                               batchSize: String = "100000",
                               socketTimeout: String = "300000",
                               numPartitions: String = "50",
                               rewriteBatchedStatements: String = "true"): Properties = {
        val properties = new Properties
        properties.put("driver", "ru.yandex.clickhouse.ClickHouseDriver")
        properties.put("user", "default")
        properties.put("password", "数据库密码")
        properties.put("batchsize", batchSize)
        properties.put("socket_timeout", socketTimeout)
        properties.put("numPartitions", numPartitions)
        properties.put("rewriteBatchedStatements", rewriteBatchedStatements)
        properties
      }
    // 读取click数据库数据
    val today = "2023-06-05"
    val ckProperties = getCKJdbcProperties()
    val ckUrl = "jdbc:clickhouse://233.233.233.233:8123/ss"
    val ckTable = "ss.test"
    var ckDF = spark.read.jdbc(ckUrl, ckTable, ckProperties)
  • **show** 展示数据,类似于select * from test的功能

    1. [ckDF.show](http://ckDF.show) 默认展示前20个记录
    2. ckDF.show(3) 指定展示记录数
    3. ckDF.show(false) 是否展示前20个
    4. ckDF.show(3, 0) 截取记录数
  • **ckDF.collect** 方法会将 ckDF中的所有数据都获取到,并返回一个Array对象

  • ckDF.collectAsList 功能和collect类似,只不过将返回结构变成了List对象

  • **ckDF.describe**("ip_src").show(3) ****获取指定字段的统计信息

    scala 复制代码
    scala> ckDF.describe("ip_src").show(3)
    +-------+------+                                                                
    |summary|ip_src|
    +-------+------+
    |  count|855035|
    |   mean|  null|
    | stddev|  null|
    +-------+------+
    only showing top 3 rows
  • first, head, take, takeAsList 获取若干行记录

    1. first获取第一行记录
    2. head获取第一行记录,head(n: Int)获取前n行记录
    3. take(n: Int)获取前n行数据
    4. takeAsList(n: Int)获取前n行数据,并以List的形式展现

    Row或者Array[Row]的形式返回一行或多行数据。firsthead功能相同。taketakeAsList方法会将获得到的数据返回到Driver端,所以,使用这两个方法时需要注意数据量,以免Driver发生OutOfMemoryError

相关推荐
无级程序员7 小时前
大数据Hive之拉链表增量取数合并设计(主表加历史表合并成拉链表)
大数据·hive·hadoop
华农DrLai9 小时前
Spark SQL Catalyst 优化器详解
大数据·hive·sql·flink·spark
uesowys18 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
qq_124987075321 小时前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
十月南城1 天前
Hive与离线数仓方法论——分层建模、分区与桶的取舍与查询代价
数据仓库·hive·hadoop
鹏说大数据1 天前
Spark 和 Hive 的关系与区别
大数据·hive·spark
B站计算机毕业设计超人1 天前
计算机毕业设计Hadoop+Spark+Hive招聘推荐系统 招聘大数据分析 大数据毕业设计(源码+文档+PPT+ 讲解)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
B站计算机毕业设计超人1 天前
计算机毕业设计hadoop+spark+hive交通拥堵预测 交通流量预测 智慧城市交通大数据 交通客流量分析(源码+LW文档+PPT+讲解视频)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
AI架构师小马1 天前
Hive调优手册:从入门到精通的完整指南
数据仓库·hive·hadoop·ai
数据架构师的AI之路1 天前
深入了解大数据领域Hive的HQL语言特性
大数据·hive·hadoop·ai