【机器学习】三要素——数据、模型、算法

机器学习三要素

我 在学习过程中,对于"模型"和"算法"的概念不清晰,一直混淆,通过查阅了一些资料在此总结一下。
数据模型算法被称为机器学习的三要素,因为它们在机器学习中具有不可分割的作用。
机器学习总的来说,就是算法在数据上进行运算产生模型

数据

数据是机器学习的基础。机器学习算法需要大量的数据作为输入。
我们知道,计算机能够处理的是数值,而不是图片或者文字。对于数值类数据,我们需要做好数据清洗,保证数据的质量。对于图片或者文字类数据,我们需要做好特征工程。

模型

模型是机器学习的核心。模型是机器学习算法的结果,它通过学习数据中的模式和规律来生成特定的输出。
一个被训练好的模型,可以被理解成一个函数y=f(x)。我们把数据(对应的x)输入进去,得到输出结果(对应其中的y)。
这个输出结果,可能是一个数值(回归),也可能是一个标签(分类)。
模型可以是线性模型、决策树、神经网络等,取决于具体的任务和问题。

模型是怎么得到的?

模型是基于数据,经由训练得到的。上面说到可以理解为模型是函数y=f(x)。要从x计算出y,需要函数f的具体形式,它的的具体形式(二次函数?三次函数?幂函数?指数函数?高斯函数?)以及需要知道每一个参数具体的值。
在开始训练的时候,我们有一些源样本数据,一个x对应一个y。这个时候,我们会首先选定一个模型类型,即确定模型的类型。比如说是一个线性模型y=ax2+bx+c,但此时我们还不能确定其中参数a、b、c的具体值。
训练就是根据已经选定的函数f的具体形式,结合训练数据,计算出其中各个参数的具体取值的过程。

"训练的过程需要根据某种章法进行运算,这个章法,就是算法。"

算法

算法是实现机器学习过程的工具。不同的机器学习算法适用于不同类型的问题,如监督学习、无监督学习、强化学习等。算法的选择和调优可以影响到机器学习的效率和准确性。
我们需要尽可能选择合适的算法,从而找到最优的模型。这个最优模型的求解过程就是算法,不断地调节模型的参数,从而达到最优的效果。常用的方法包括,梯度下降法、随机梯度下降法、小批量梯度下降法等。

相关推荐
邴越12 分钟前
OpenAI领导力指南《在AI时代保持领先》
人工智能
暗魂b18 分钟前
UltraLED: Learning to See Everything in Ultra-High Dynamic Range Scenes 【论文阅读】
人工智能·深度学习
geneculture21 分钟前
纯粹融智学对智的认知发展三阶段:从概念澄清到学科奠基
人工智能·哲学与科学统一性·信息融智学·融智时代(杂志)·语言科学
B站计算机毕业设计之家25 分钟前
大数据毕业设计:基于python图书数据分析可视化系统 书籍大屏 爬虫 清洗 可视化 当当网书籍数据分析 Django框架 图书推荐 大数据
大数据·爬虫·python·机器学习·自然语言处理·数据分析·课程设计
hk112434 分钟前
【RL/Virtualization】2026年度深度强化学习策略与云原生意识虚拟化基准索引 (Benchmark Index)
人工智能·云计算·数据集·元宇宙·强化学习
shdwak....sad44 分钟前
DeepAudit AI多智能体代码审计项目学习与解读(一)
人工智能·安全
好奇龙猫1 小时前
【人工智能学习-AI-MIT公开课12. 学习:神经网络、反向传播】
人工智能·神经网络·学习
GEO AI搜索优化助手1 小时前
未来视野:空间搜索时代的品牌增长新范式
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
Elaine3361 小时前
【 基于 TensorFlow+CNN 的水果图像识别系统设计与实现】
人工智能·python·深度学习·计算机视觉·cnn·tensorflow