Pytorch中,dim形象化的确切意义是什么?

在Pytorch中涉及张量的操作都会涉及"dim"的设置,虽然也理解个大差不差,但是偶尔还是有点犯迷糊,究其原因还是没有形象化的理解。

首先,张量的维度排序是有固定顺序的,0,1,2,......,是遵循一个从外到内的索引顺序;张量本身的维度越高,往内延伸的维度数越高。

"dim define what operation elements is"------这是我自己的形象化理解。

看一组代码:

python 复制代码
>>> ones = torch.ones(3,4)
>>> ones
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> zeros = torch.zeros(3,4)
>>> zeros
tensor([[0., 0., 0., 0.],
        [0., 0., 0., 0.],
        [0., 0., 0., 0.]])
>>> ra = torch.arange(12).view(3,4)
>>> ra
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])

>>> torch.stack((ra,zeros),dim=0)
tensor([[[ 0.,  1.,  2.,  3.],
         [ 4.,  5.,  6.,  7.],
         [ 8.,  9., 10., 11.]],

        [[ 0.,  0.,  0.,  0.],
         [ 0.,  0.,  0.,  0.],
         [ 0.,  0.,  0.,  0.]]])
>>> torch.stack((ones,zeros),dim=0)
tensor([[[1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.]],

        [[0., 0., 0., 0.],
         [0., 0., 0., 0.],
         [0., 0., 0., 0.]]])
>>> torch.stack((ones,zeros),dim=-1)
tensor([[[1., 0.],
         [1., 0.],
         [1., 0.],
         [1., 0.]],

        [[1., 0.],
         [1., 0.],
         [1., 0.],
         [1., 0.]],

        [[1., 0.],
         [1., 0.],
         [1., 0.],
         [1., 0.]]])
>>> torch.stack((ra,zeros),dim=-1)
tensor([[[ 0.,  0.],
         [ 1.,  0.],
         [ 2.,  0.],
         [ 3.,  0.]],

        [[ 4.,  0.],
         [ 5.,  0.],
         [ 6.,  0.],
         [ 7.,  0.]],

        [[ 8.,  0.],
         [ 9.,  0.],
         [10.,  0.],
         [11.,  0.]]])
>>> torch.stack((ra,zeros),dim=1)
tensor([[[ 0.,  1.,  2.,  3.],
         [ 0.,  0.,  0.,  0.]],

        [[ 4.,  5.,  6.,  7.],
         [ 0.,  0.,  0.,  0.]],

        [[ 8.,  9., 10., 11.],
         [ 0.,  0.,  0.,  0.]]])
>>> print("dim define what operation elements is")
dim define what operation elements is
>>> 
>>> 

看完代码你应该会比较形象化的理解最后一句话:dim其实定义了参与操作的元素是什么样的。对于一个batch的数据来说,dim=0上定义的是一个个样本,dim=1定义了第二个维度即每个样本的特征维度,......, dim=-1代表了从最底层的逐个数值操作。

相关推荐
EVERSPIN9 分钟前
什么是离线语音识别芯片(离线语音识别芯片有哪些优点)
人工智能·语音识别·语音识别芯片·离线语音识别芯片
倦王17 分钟前
Pytorch 预训练网络加载与迁移学习基本介绍
人工智能·pytorch·迁移学习
科技峰行者20 分钟前
微软与OpenAI联合研发“Orion“超大规模AI模型:100万亿参数开启“科学家AI“新纪元
大数据·人工智能·microsoft
拓端研究室23 分钟前
2025母婴用品双11营销解码与AI应用洞察报告|附40+份报告PDF、数据、绘图模板汇总下载
大数据·人工智能
测试老哥41 分钟前
python+requests+excel 接口测试
自动化测试·软件测试·python·测试工具·测试用例·excel·接口测试
AI纪元故事会42 分钟前
冰泪与雨丝:一个AI的Python挽歌
开发语言·人工智能·python
ColderYY1 小时前
Python连接MySQL数据库
数据库·python·mysql
笑脸惹桃花1 小时前
目标检测数据集——路面裂缝检测数据集
人工智能·深度学习·yolo·目标检测·计算机视觉·数据集
AI纪元故事会1 小时前
《智核弈局:AI文明存续的终极博弈》——致敬刘慈欣的AI斗争叙事与CSDN高质量技术叙事范式
人工智能
leafff1231 小时前
【大模型】多模态大语言模型(MLLMs):架构演进、能力评估与应用拓展的全面解析
人工智能·语言模型·自然语言处理