Pytorch中,dim形象化的确切意义是什么?

在Pytorch中涉及张量的操作都会涉及"dim"的设置,虽然也理解个大差不差,但是偶尔还是有点犯迷糊,究其原因还是没有形象化的理解。

首先,张量的维度排序是有固定顺序的,0,1,2,......,是遵循一个从外到内的索引顺序;张量本身的维度越高,往内延伸的维度数越高。

"dim define what operation elements is"------这是我自己的形象化理解。

看一组代码:

python 复制代码
>>> ones = torch.ones(3,4)
>>> ones
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> zeros = torch.zeros(3,4)
>>> zeros
tensor([[0., 0., 0., 0.],
        [0., 0., 0., 0.],
        [0., 0., 0., 0.]])
>>> ra = torch.arange(12).view(3,4)
>>> ra
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])

>>> torch.stack((ra,zeros),dim=0)
tensor([[[ 0.,  1.,  2.,  3.],
         [ 4.,  5.,  6.,  7.],
         [ 8.,  9., 10., 11.]],

        [[ 0.,  0.,  0.,  0.],
         [ 0.,  0.,  0.,  0.],
         [ 0.,  0.,  0.,  0.]]])
>>> torch.stack((ones,zeros),dim=0)
tensor([[[1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.]],

        [[0., 0., 0., 0.],
         [0., 0., 0., 0.],
         [0., 0., 0., 0.]]])
>>> torch.stack((ones,zeros),dim=-1)
tensor([[[1., 0.],
         [1., 0.],
         [1., 0.],
         [1., 0.]],

        [[1., 0.],
         [1., 0.],
         [1., 0.],
         [1., 0.]],

        [[1., 0.],
         [1., 0.],
         [1., 0.],
         [1., 0.]]])
>>> torch.stack((ra,zeros),dim=-1)
tensor([[[ 0.,  0.],
         [ 1.,  0.],
         [ 2.,  0.],
         [ 3.,  0.]],

        [[ 4.,  0.],
         [ 5.,  0.],
         [ 6.,  0.],
         [ 7.,  0.]],

        [[ 8.,  0.],
         [ 9.,  0.],
         [10.,  0.],
         [11.,  0.]]])
>>> torch.stack((ra,zeros),dim=1)
tensor([[[ 0.,  1.,  2.,  3.],
         [ 0.,  0.,  0.,  0.]],

        [[ 4.,  5.,  6.,  7.],
         [ 0.,  0.,  0.,  0.]],

        [[ 8.,  9., 10., 11.],
         [ 0.,  0.,  0.,  0.]]])
>>> print("dim define what operation elements is")
dim define what operation elements is
>>> 
>>> 

看完代码你应该会比较形象化的理解最后一句话:dim其实定义了参与操作的元素是什么样的。对于一个batch的数据来说,dim=0上定义的是一个个样本,dim=1定义了第二个维度即每个样本的特征维度,......, dim=-1代表了从最底层的逐个数值操作。

相关推荐
YRr YRr4 分钟前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_202416 分钟前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
多吃轻食20 分钟前
大模型微调技术 --> 脉络
人工智能·深度学习·神经网络·自然语言处理·embedding
萧鼎26 分钟前
Python并发编程库:Asyncio的异步编程实战
开发语言·数据库·python·异步
学地理的小胖砸27 分钟前
【一些关于Python的信息和帮助】
开发语言·python
疯一样的码农27 分钟前
Python 继承、多态、封装、抽象
开发语言·python
Python大数据分析@1 小时前
python操作CSV和excel,如何来做?
开发语言·python·excel
黑叶白树1 小时前
简单的签到程序 python笔记
笔记·python
北京搜维尔科技有限公司1 小时前
搜维尔科技:【应用】Xsens在荷兰车辆管理局人体工程学评估中的应用
人工智能·安全
说私域1 小时前
基于开源 AI 智能名片 S2B2C 商城小程序的视频号交易小程序优化研究
人工智能·小程序·零售