Pytorch中,dim形象化的确切意义是什么?

在Pytorch中涉及张量的操作都会涉及"dim"的设置,虽然也理解个大差不差,但是偶尔还是有点犯迷糊,究其原因还是没有形象化的理解。

首先,张量的维度排序是有固定顺序的,0,1,2,......,是遵循一个从外到内的索引顺序;张量本身的维度越高,往内延伸的维度数越高。

"dim define what operation elements is"------这是我自己的形象化理解。

看一组代码:

python 复制代码
>>> ones = torch.ones(3,4)
>>> ones
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> zeros = torch.zeros(3,4)
>>> zeros
tensor([[0., 0., 0., 0.],
        [0., 0., 0., 0.],
        [0., 0., 0., 0.]])
>>> ra = torch.arange(12).view(3,4)
>>> ra
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])

>>> torch.stack((ra,zeros),dim=0)
tensor([[[ 0.,  1.,  2.,  3.],
         [ 4.,  5.,  6.,  7.],
         [ 8.,  9., 10., 11.]],

        [[ 0.,  0.,  0.,  0.],
         [ 0.,  0.,  0.,  0.],
         [ 0.,  0.,  0.,  0.]]])
>>> torch.stack((ones,zeros),dim=0)
tensor([[[1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.]],

        [[0., 0., 0., 0.],
         [0., 0., 0., 0.],
         [0., 0., 0., 0.]]])
>>> torch.stack((ones,zeros),dim=-1)
tensor([[[1., 0.],
         [1., 0.],
         [1., 0.],
         [1., 0.]],

        [[1., 0.],
         [1., 0.],
         [1., 0.],
         [1., 0.]],

        [[1., 0.],
         [1., 0.],
         [1., 0.],
         [1., 0.]]])
>>> torch.stack((ra,zeros),dim=-1)
tensor([[[ 0.,  0.],
         [ 1.,  0.],
         [ 2.,  0.],
         [ 3.,  0.]],

        [[ 4.,  0.],
         [ 5.,  0.],
         [ 6.,  0.],
         [ 7.,  0.]],

        [[ 8.,  0.],
         [ 9.,  0.],
         [10.,  0.],
         [11.,  0.]]])
>>> torch.stack((ra,zeros),dim=1)
tensor([[[ 0.,  1.,  2.,  3.],
         [ 0.,  0.,  0.,  0.]],

        [[ 4.,  5.,  6.,  7.],
         [ 0.,  0.,  0.,  0.]],

        [[ 8.,  9., 10., 11.],
         [ 0.,  0.,  0.,  0.]]])
>>> print("dim define what operation elements is")
dim define what operation elements is
>>> 
>>> 

看完代码你应该会比较形象化的理解最后一句话:dim其实定义了参与操作的元素是什么样的。对于一个batch的数据来说,dim=0上定义的是一个个样本,dim=1定义了第二个维度即每个样本的特征维度,......, dim=-1代表了从最底层的逐个数值操作。

相关推荐
嘻嘻哈哈开森2 分钟前
Java开发工程师转AI工程师
人工智能·后端
rocksun3 分钟前
Agentic AI和平台工程:如何结合
人工智能·devops
孔令飞13 分钟前
关于 LLMOPS 的一些粗浅思考
人工智能·云原生·go
创新技术阁17 分钟前
FastAPI 的两大核心组件:Starlette 和 Pydantic 详解
后端·python
关山月18 分钟前
被低估的服务器发送事件(SSE)
python
Lecea_L19 分钟前
你能在K步内赚最多的钱吗?用Java解锁最大路径收益算法(含AI场景分析)
java·人工智能·算法
2501_9071368223 分钟前
OfficeAI构建本地办公生态:WPS/Word双端联动,数据自由流转
人工智能·word·wps
飞哥数智坊27 分钟前
从零构建自己的MCP Server
人工智能
是Dream呀29 分钟前
ResNeXt: 通过聚合残差变换增强深度神经网络
人工智能·算法
DeepLink36 分钟前
Python小练习系列:学生信息排序(sorted + key函数)
python·求职