coqui-ai/TTS 安装使用

Coqui AI的TTS是一款开源深度学习文本转语音工具,以高质量、多语言合成著称。它提供超过1100种语言的预训练模型库,能够轻松集成到各种应用中,并允许用户通过简单API进行个性化声音训练与微调。其技术亮点包括但不限于低资源适应性(如YourTTS模型可处理有限或零样本数据),实时流式传输功能(支持200毫秒级延迟)以及强大的跨语言克隆能力。

安装:

python 复制代码
pip install TTS

根据提示配置环境,比如Microsoft C++ Build Tools,安装完成可以进行语音生成:

示例:

python 复制代码
import torch
from TTS.api import TTS

# Get device
device = "cuda" if torch.cuda.is_available() else "cpu"

# List available 🐸TTS models
print(TTS().list_models())

# Init TTS
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)

# Run TTS
# ❗ Since this model is multi-lingual voice cloning model, we must set the target speaker_wav and language
# Text to speech list of amplitude values as output
wav = tts.tts(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en")
# Text to speech to a file
tts.tts_to_file(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
  1. import torch: 导入PyTorch库,用于处理计算图和运行在GPU上的深度学习模型。
  2. from TTS.api import TTS: 从TTS库中导入TTS类,用于文本到语音合成的API。
  3. device = "cuda" if torch.cuda.is_available() else "cpu": 检测当前系统是否支持CUDA(GPU加速),如果支持,则将设备设置为GPU("cuda"),否则设置为CPU。
  4. print(TTS().list_models()): 打印可用的TTS模型列表,列出所有可用的语音合成模型。
  5. tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device): 初始化TTS对象,并指定要使用的语音合成模型。在这个例子中,使用了一个多语言语音克隆模型(multilingual voice cloning model),并将其移动到之前检测到的设备(GPU或CPU)上。
  6. tts.tts_to_file(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav") : 将TTS生成的语音保存到文件中。调用**tts.tts_to_file()**方法,传入要转换的文本、目标说话者的语音文件路径(需要克隆语音的文件)、语言参数以及要保存语音的文件路径。

模型下载:

案例model文件下载缓慢,可以在这获取

路径修改参考:

python 复制代码
os.environ.setdefault('TTS_HOME', 'D:/workplace/pyhon/model/TTS_HOME')
os.environ.setdefault('XDG_DATA_HOME', 'D:/workplace/pyhon/model/XDG_DATA_HOME')
相关推荐
华新嘉华DTC创新营销12 小时前
华新嘉华:AI搜索优化重塑本地生活行业:智能推荐正取代“关键词匹配”
人工智能·百度·生活
SmartBrain13 小时前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
l1t14 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华15 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu16 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师17 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr82818 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡19 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成19 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃19 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode