coqui-ai/TTS 安装使用

Coqui AI的TTS是一款开源深度学习文本转语音工具,以高质量、多语言合成著称。它提供超过1100种语言的预训练模型库,能够轻松集成到各种应用中,并允许用户通过简单API进行个性化声音训练与微调。其技术亮点包括但不限于低资源适应性(如YourTTS模型可处理有限或零样本数据),实时流式传输功能(支持200毫秒级延迟)以及强大的跨语言克隆能力。

安装:

python 复制代码
pip install TTS

根据提示配置环境,比如Microsoft C++ Build Tools,安装完成可以进行语音生成:

示例:

python 复制代码
import torch
from TTS.api import TTS

# Get device
device = "cuda" if torch.cuda.is_available() else "cpu"

# List available 🐸TTS models
print(TTS().list_models())

# Init TTS
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)

# Run TTS
# ❗ Since this model is multi-lingual voice cloning model, we must set the target speaker_wav and language
# Text to speech list of amplitude values as output
wav = tts.tts(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en")
# Text to speech to a file
tts.tts_to_file(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
  1. import torch: 导入PyTorch库,用于处理计算图和运行在GPU上的深度学习模型。
  2. from TTS.api import TTS: 从TTS库中导入TTS类,用于文本到语音合成的API。
  3. device = "cuda" if torch.cuda.is_available() else "cpu": 检测当前系统是否支持CUDA(GPU加速),如果支持,则将设备设置为GPU("cuda"),否则设置为CPU。
  4. print(TTS().list_models()): 打印可用的TTS模型列表,列出所有可用的语音合成模型。
  5. tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device): 初始化TTS对象,并指定要使用的语音合成模型。在这个例子中,使用了一个多语言语音克隆模型(multilingual voice cloning model),并将其移动到之前检测到的设备(GPU或CPU)上。
  6. tts.tts_to_file(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav") : 将TTS生成的语音保存到文件中。调用**tts.tts_to_file()**方法,传入要转换的文本、目标说话者的语音文件路径(需要克隆语音的文件)、语言参数以及要保存语音的文件路径。

模型下载:

案例model文件下载缓慢,可以在这获取

路径修改参考:

python 复制代码
os.environ.setdefault('TTS_HOME', 'D:/workplace/pyhon/model/TTS_HOME')
os.environ.setdefault('XDG_DATA_HOME', 'D:/workplace/pyhon/model/XDG_DATA_HOME')
相关推荐
小溪彼岸5 分钟前
【Hugging Face实战】使用Gradio创建一个图片上色应用
aigc
Mintopia6 分钟前
一个月速成 AI 工程师:从代码小白到智能工匠的修炼手册
前端·javascript·aigc
小阿鑫11 分钟前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp
说私域1 小时前
基于定制开发开源 AI 智能名片 S2B2C 商城小程序的热点与人工下发策略研究
人工智能·小程序
GoGeekBaird2 小时前
GoHumanLoopHub开源上线,开启Agent人际协作新方式
人工智能·后端·github
Jinkxs2 小时前
测试工程师的AI转型指南:从工具使用到测试策略重构
人工智能·重构
别惹CC2 小时前
Spring AI 进阶之路01:三步将 AI 整合进 Spring Boot
人工智能·spring boot·spring
stbomei4 小时前
当 AI 开始 “理解” 情感:情感计算技术正在改写人机交互规则
人工智能·人机交互
Moshow郑锴9 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20259 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn