给定一个 n
个点 m
条边的有向图,图中可能存在重边和自环,所有边权均为非负值。
请你求出 1
号点到 n
号点的最短距离,如果无法从 1
号点走到 n
号点,则输出 −1
。
输入格式
第一行包含整数 n
和 m
。
接下来 m
行每行包含三个整数 x,y,z
,表示存在一条从点 x
到点 y
的有向边,边长为 z
。
输出格式
输出一个整数,表示 1
号点到 n
号点的最短距离。
如果路径不存在,则输出 −1
。
数据范围
1≤n,m≤1.5×105
,
图中涉及边长均不小于 0
,且不超过 10000
。
数据保证:如果最短路存在,则最短路的长度不超过 109
。
输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3
cpp
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 150010;
int n, m;
int h[N], e[N], ne[N], w[N], idx;
int dist[N];
int st[N];
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1});
while(heap.size())
{
auto t = heap.top();
heap.pop();
int ver = t.second, distance = t.first;
if(st[ver]) continue;
st[ver] = true;
for(int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if(dist[j] > distance + w[i])
{
dist[j] = distance + w[i];
heap.push({dist[j], j});
}
}
}
if(dist[n] == 0x3f3f3f3f)
return -1;
return dist[n];
}
int main ()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
while(m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
int t = dijkstra();
printf("%d\n", t);
return 0;
}