PyTorch搭建LeNet测试集实现

搭建神经网络请看PyTorch搭建LeNet神经网络-CSDN博客

实现训练集请看PyTorch搭建LeNet训练集详细实现-CSDN博客

测试集比较简单,直接上代码。

代码实现

python 复制代码
# 导包 不必多说
import torch
import torchvision.transforms as transforms
from PIL import Image
from model import LeNet

# 详细解释见下面
transform = transforms.Compose(
    [transforms.Resize((32, 32)),
     transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])


# 与训练集一样的分类
classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# 模型实例化
net = LeNet()
net.load_state_dict(torch.load('LeNet.pth'))  # 载入在训练时保存的权重文件

im = Image.open('3.jpg')
im = transform(im)  # 预处理数据
im = torch.unsqueeze(im, dim=0)  # 将数据中增加一个batch维度

with torch.no_grad():
    outputs = net(im)
    # 寻找最大值所在的index索引值
    predict = torch.max(outputs, dim=1)[1].data.numpy()
# 最后打印预测结果
print(classes[int(predict)])

预处理数据函数

python 复制代码
transform = transforms.Compose(
    [transforms.Resize((32, 32)),
     transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

这一段是将数据预处理,相比于训练集中的数据预处理多了transforms.Resize((32, 32)),因为导入的图片尺寸不一定正确,需要先将图片的尺寸重新定义。

运行结果

我测试了飞机、汽车、鸟,飞机、汽车都可以识别出来。但鸟不行,可能是图片的像素太小,训练不到位。

把鸟给预测成猫了

总结

三天!从0开始,实现了LeNet。跟着b站上的视频,反复观看并记笔记,再自己手敲代码,再写出笔记。代码都能跑通实现,中间遇到的问题也靠自己独立解决了。对于自己来说还是比较有成就感的。但是我知道这点知识对于想要学好深度学习是远远远远不够的。还是要继续不断地学习。这样一篇一篇笔记也是我努力学习的见证!要努力成为很厉害的人!希望大家也是!

相关推荐
老饼讲解-BP神经网络20 分钟前
一篇入门之-评分卡变量分箱(卡方分箱、决策树分箱、KS分箱等)实操例子
算法·决策树·机器学习
pyengine39 分钟前
基于pandoc的MarkDown格式与word相互转换小工具开发(pyqt5)
开发语言·python·qt·word
YuSun_WK1 小时前
配置MambaIRv2: Attentive State Space Restoration的环境
开发语言·python
Nick_zcy1 小时前
开发基于python的商品推荐系统,前端框架和后端框架的选择比较
开发语言·python·前端框架·flask·fastapi
riveting1 小时前
SD2351核心板:重构AI视觉产业价值链的“超级节点”
大数据·linux·图像处理·人工智能·重构·智能硬件
小墙程序员1 小时前
机器学习入门(五)聚类算法
机器学习
Lilith的AI学习日记1 小时前
大语言模型中的幻觉现象深度解析:原理、评估与缓解策略
人工智能·语言模型·自然语言处理·aigc·ai编程
闭月之泪舞1 小时前
OpenCv高阶(十)——光流估计
人工智能·opencv·计算机视觉
layneyao2 小时前
大语言模型(LLM)的Prompt Engineering:从入门到精通
人工智能·语言模型·prompt
一点.点2 小时前
李沐动手深度学习(pycharm中运行笔记)——04.数据操作
pytorch·笔记·python·深度学习·pycharm·动手深度学习