大语言模型的知识融合(ICLR2024)

一、写作动机:

虽然从头开始训练大型语言模型(LLMs)可以生成具有独特功能和优势的模型,但这种方法成本高昂,而且可能导致功能冗余。

二、主要贡献:

入了 LLMs 知识融合的概念,旨在结合现有 LLMs 的能力,并将它们转移到一个 LLM 中。通过利用源 LLM 的生成分布,将它们的集体知识和独特优势外部化,从而有可能提升目标模型的能力,使其超越任何独立源 LLM 的能力。

三、大模型知识融合:

3.1预备知识:

让t表示从语料库C中采样的长度为N的文本序列,t<i = (t1, t2, . . . , ti−1)表示第i个toekn之前的序列。对于由θ参数化的语言模型的因果语言建模(CLM)目标,定义为最小化负对数似然:

具体来说,对于文本序列t,我们聚合token级别的预测,并创建一个概率分布矩阵Ptθ ∈ RN×V,其中第i行表示模型对于大小为V的词汇表中第i个token的预测分布。然后,CLM目标可以解释为减小Ptθ和独热标签矩阵Ot ∈ {0, 1}N×V之间的差异,其中每一行是相应golden token的独热表示。形式上,CLM目标转换为以下表示:

3.2模型融合

应用提供的K个源LLMs并获得一组概率分布矩阵 ------> 对齐概率矩阵(源LLMs之间词汇表会有差异)------>矩阵融合

融合后的目标函数转变为如下式子:

PS:两种融合函数:(1)MinCE:该函数输出交叉熵得分最低的分布矩阵;(2)AvgCE:该函数基于交叉熵得分产生分布矩阵的加权平均。

持续训练的总体目标包括因果语言建模目标LCLM和融合目标LFusion的加权组合:

四、实验:

模型:三个代表性的开源模型:Llama-2、OpenLLaMA和MPT作为融合的源LLMs。关于目标LLM,选择另一个Llama-2 7B,通常是这三个源LLMs中最强大的一个。目标LLM从与其源对应物相同的预训练权重开始,但不同之处在于它在训练过程中更新参数。

数据集:MiniPile包括大约100万份来自22个领域的文档和18亿个token。

评估基准:推理、常识、代码生成。

Baseline:原始LLMs,包括Llama-2 7B、OpenLLaMA 7B和MPT 7B;以及(2)Llama-2 CLM:仅使用Casual Language Modeling目标在MiniPile上持续训练Llama-2 7B。

实验结果:

相关推荐
佚明zj10 分钟前
全卷积和全连接
人工智能·深度学习
qzhqbb3 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨3 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041083 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌4 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭4 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^4 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246665 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k5 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫5 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法