大语言模型的知识融合(ICLR2024)

一、写作动机:

虽然从头开始训练大型语言模型(LLMs)可以生成具有独特功能和优势的模型,但这种方法成本高昂,而且可能导致功能冗余。

二、主要贡献:

入了 LLMs 知识融合的概念,旨在结合现有 LLMs 的能力,并将它们转移到一个 LLM 中。通过利用源 LLM 的生成分布,将它们的集体知识和独特优势外部化,从而有可能提升目标模型的能力,使其超越任何独立源 LLM 的能力。

三、大模型知识融合:

3.1预备知识:

让t表示从语料库C中采样的长度为N的文本序列,t<i = (t1, t2, . . . , ti−1)表示第i个toekn之前的序列。对于由θ参数化的语言模型的因果语言建模(CLM)目标,定义为最小化负对数似然:

具体来说,对于文本序列t,我们聚合token级别的预测,并创建一个概率分布矩阵Ptθ ∈ RN×V,其中第i行表示模型对于大小为V的词汇表中第i个token的预测分布。然后,CLM目标可以解释为减小Ptθ和独热标签矩阵Ot ∈ {0, 1}N×V之间的差异,其中每一行是相应golden token的独热表示。形式上,CLM目标转换为以下表示:

3.2模型融合

应用提供的K个源LLMs并获得一组概率分布矩阵 ------> 对齐概率矩阵(源LLMs之间词汇表会有差异)------>矩阵融合

融合后的目标函数转变为如下式子:

PS:两种融合函数:(1)MinCE:该函数输出交叉熵得分最低的分布矩阵;(2)AvgCE:该函数基于交叉熵得分产生分布矩阵的加权平均。

持续训练的总体目标包括因果语言建模目标LCLM和融合目标LFusion的加权组合:

四、实验:

模型:三个代表性的开源模型:Llama-2、OpenLLaMA和MPT作为融合的源LLMs。关于目标LLM,选择另一个Llama-2 7B,通常是这三个源LLMs中最强大的一个。目标LLM从与其源对应物相同的预训练权重开始,但不同之处在于它在训练过程中更新参数。

数据集:MiniPile包括大约100万份来自22个领域的文档和18亿个token。

评估基准:推理、常识、代码生成。

Baseline:原始LLMs,包括Llama-2 7B、OpenLLaMA 7B和MPT 7B;以及(2)Llama-2 CLM:仅使用Casual Language Modeling目标在MiniPile上持续训练Llama-2 7B。

实验结果:

相关推荐
fanstuck3 分钟前
Prompt提示工程上手指南(六):AI避免“幻觉”(Hallucination)策略下的Prompt
人工智能·语言模型·自然语言处理·nlp·prompt
zhangfeng113332 分钟前
win7 R 4.4.0和RStudio1.25的版本兼容性以及系统区域设置有关 导致Plots绘图面板被禁用,但是单独页面显示
开发语言·人工智能·r语言·生物信息
DogDaoDao1 小时前
神经网络稀疏化设计构架方法和原理深度解析
人工智能·pytorch·深度学习·神经网络·大模型·剪枝·网络稀疏
西猫雷婶2 小时前
pytorch基本运算-Python控制流梯度运算
人工智能·pytorch·python·深度学习·神经网络·机器学习
说私域2 小时前
新零售第一阶段传统零售商的困境突破与二次增长路径:基于定制开发开源AI智能名片S2B2C商城小程序的实践探索
人工智能·开源·零售
寒月霜华3 小时前
机器学习-模型验证
人工智能·深度学习·机器学习
救救孩子把3 小时前
3-机器学习与大模型开发数学教程-第0章 预备知识-0-3 函数初步(多项式、指数、对数、三角函数、反函数)
人工智能·数学·机器学习
CareyWYR3 小时前
每周AI论文速递(250908-250912)
人工智能
张晓~183399481213 小时前
短视频矩阵源码-视频剪辑+AI智能体开发接入技术分享
c语言·c++·人工智能·矩阵·c#·php·音视频
deephub4 小时前
量子机器学习入门:三种数据编码方法对比与应用
人工智能·机器学习·量子计算·数据编码·量子机器学习