关于华为昇腾(Ascend)AI芯片,CANN计算架构,MindSpore深度学习框架,MindStudio开发工具

1、华为昇腾生态

深度学习之前的配置都是:NVIDIA GPU / CPU + CUDA + Tensorflow/PyTorch

后来老美禁止 NVIDIA 卖GPU芯片给我们,于是国内企业开始发力CPU和GPU硬件,成果丰硕,虽然与NVIDIA顶级GPU还有一些差距,但是也不错,为了尽快填补国内需求,我们的解决方案是国产GPU + CUDA + Tensorflow/PyTorch,本来用的好好的,然而敌人亡我之心不死,开始禁止我们使用 CUDA ,它其实就是一个协议或者指令集,它连接底层硬件与上层机器学习框架即Tensorflow/PyTorch,通过硬件和软件两个维度卡你,我们这么多年习惯了拿来主义,现在变得很被动。

值此危难之际,还是华为站了出来,硬件软件一起扛,硬件上推出了昇腾系列AI计算芯片 Ascend910/Ascend310,就是专门用来计算的GPU芯片,软件上使用 CANN(类比于CUDA),然后推出机器学习框架异思mindspore(对标Tensorflow/PyTorch),同时mindspore也是开放的,它支持基于 CUDA 的 GPU 以及普通的 CPU芯片,当然mindspore也是使用 Python 来开发,还提供一个 MindStudio 全流程开发工具链。官网 https://www.mindspore.cn/,也就是说华为昇腾是一个完整的生态,不再受外界掣肘。

有资料显示Ascend910性能与NVIDIA-A100相当,这其实很牛逼了,要知道英伟达发展了多少年,我们才多少年。

在人工智能框架使用率方面,TensorFlow、PyTorch、昇思MindSpore和飞桨合计占了86%的市场份额,其中,MindSpore以11%的占比在全球框架里排名第三,逆势进入了AI框架的第一梯队。

2、昇腾当前有哪些不足:

当前昇腾需求的爆发式增长动力主要来自1)AI算力行业自身的快速增长;2)国内自主可控的替代,比如说国家级别的人工智能计算中心,大部分开始会采用昇腾。

当相比于英伟达目前也有不少核心问题:

1,昇腾只能用于华为自身生态中的大模型业务,比如昇腾不能做GPT-3,因为910不支持32位浮点,**而目前大模型训练几乎都要使用32位的浮点,所以昇腾芯片只能利用华为开发的框架(如MindSpore),再加上优化好的大模型,比如盘古CV。

2,生态依然需要完善。英伟达最强大的护城河在于它的生态系统CUDA。目前CANN还有差距。

3,先进制程的卡脖子问题得到了一定解决,但依然需要担忧产能问题。

相关推荐
肥猪猪爸29 分钟前
使用卡尔曼滤波器估计pybullet中的机器人位置
数据结构·人工智能·python·算法·机器人·卡尔曼滤波·pybullet
LZXCyrus1 小时前
【杂记】vLLM如何指定GPU单卡/多卡离线推理
人工智能·经验分享·python·深度学习·语言模型·llm·vllm
ZZZCY20031 小时前
华为ENSP--IP编址及静态路由配置
网络·华为
我感觉。1 小时前
【机器学习chp4】特征工程
人工智能·机器学习·主成分分析·特征工程
YRr YRr1 小时前
深度学习神经网络中的优化器的使用
人工智能·深度学习·神经网络
DieYoung_Alive1 小时前
一篇文章了解机器学习(下)
人工智能·机器学习
夏沫的梦1 小时前
生成式AI对产业的影响与冲击
人工智能·aigc
goomind2 小时前
YOLOv8实战木材缺陷识别
人工智能·yolo·目标检测·缺陷检测·pyqt5·木材缺陷识别
只怕自己不够好2 小时前
《OpenCV 图像基础操作全解析:从读取到像素处理与 ROI 应用》
人工智能·opencv·计算机视觉
幻风_huanfeng2 小时前
人工智能之数学基础:线性代数在人工智能中的地位
人工智能·深度学习·神经网络·线性代数·机器学习·自然语言处理