关于华为昇腾(Ascend)AI芯片,CANN计算架构,MindSpore深度学习框架,MindStudio开发工具

1、华为昇腾生态

深度学习之前的配置都是:NVIDIA GPU / CPU + CUDA + Tensorflow/PyTorch

后来老美禁止 NVIDIA 卖GPU芯片给我们,于是国内企业开始发力CPU和GPU硬件,成果丰硕,虽然与NVIDIA顶级GPU还有一些差距,但是也不错,为了尽快填补国内需求,我们的解决方案是国产GPU + CUDA + Tensorflow/PyTorch,本来用的好好的,然而敌人亡我之心不死,开始禁止我们使用 CUDA ,它其实就是一个协议或者指令集,它连接底层硬件与上层机器学习框架即Tensorflow/PyTorch,通过硬件和软件两个维度卡你,我们这么多年习惯了拿来主义,现在变得很被动。

值此危难之际,还是华为站了出来,硬件软件一起扛,硬件上推出了昇腾系列AI计算芯片 Ascend910/Ascend310,就是专门用来计算的GPU芯片,软件上使用 CANN(类比于CUDA),然后推出机器学习框架异思mindspore(对标Tensorflow/PyTorch),同时mindspore也是开放的,它支持基于 CUDA 的 GPU 以及普通的 CPU芯片,当然mindspore也是使用 Python 来开发,还提供一个 MindStudio 全流程开发工具链。官网 https://www.mindspore.cn/,也就是说华为昇腾是一个完整的生态,不再受外界掣肘。

有资料显示Ascend910性能与NVIDIA-A100相当,这其实很牛逼了,要知道英伟达发展了多少年,我们才多少年。

在人工智能框架使用率方面,TensorFlow、PyTorch、昇思MindSpore和飞桨合计占了86%的市场份额,其中,MindSpore以11%的占比在全球框架里排名第三,逆势进入了AI框架的第一梯队。

2、昇腾当前有哪些不足:

当前昇腾需求的爆发式增长动力主要来自1)AI算力行业自身的快速增长;2)国内自主可控的替代,比如说国家级别的人工智能计算中心,大部分开始会采用昇腾。

当相比于英伟达目前也有不少核心问题:

1,昇腾只能用于华为自身生态中的大模型业务,比如昇腾不能做GPT-3,因为910不支持32位浮点,**而目前大模型训练几乎都要使用32位的浮点,所以昇腾芯片只能利用华为开发的框架(如MindSpore),再加上优化好的大模型,比如盘古CV。

2,生态依然需要完善。英伟达最强大的护城河在于它的生态系统CUDA。目前CANN还有差距。

3,先进制程的卡脖子问题得到了一定解决,但依然需要担忧产能问题。

相关推荐
白-胖-子4 小时前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
想要成为计算机高手5 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
静心问道6 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.07 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
小楓12017 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業
数据与人工智能律师7 小时前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
chenchihwen7 小时前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习
说私域7 小时前
公域流量向私域流量转化策略研究——基于开源AI智能客服、AI智能名片与S2B2C商城小程序的融合应用
人工智能·小程序
Java樱木7 小时前
AI 编程工具 Trae 重要的升级。。。
人工智能
码字的字节7 小时前
深度学习损失函数的设计哲学:从交叉熵到Huber损失的深入探索
深度学习·交叉熵·huber