关于华为昇腾(Ascend)AI芯片,CANN计算架构,MindSpore深度学习框架,MindStudio开发工具

1、华为昇腾生态

深度学习之前的配置都是:NVIDIA GPU / CPU + CUDA + Tensorflow/PyTorch

后来老美禁止 NVIDIA 卖GPU芯片给我们,于是国内企业开始发力CPU和GPU硬件,成果丰硕,虽然与NVIDIA顶级GPU还有一些差距,但是也不错,为了尽快填补国内需求,我们的解决方案是国产GPU + CUDA + Tensorflow/PyTorch,本来用的好好的,然而敌人亡我之心不死,开始禁止我们使用 CUDA ,它其实就是一个协议或者指令集,它连接底层硬件与上层机器学习框架即Tensorflow/PyTorch,通过硬件和软件两个维度卡你,我们这么多年习惯了拿来主义,现在变得很被动。

值此危难之际,还是华为站了出来,硬件软件一起扛,硬件上推出了昇腾系列AI计算芯片 Ascend910/Ascend310,就是专门用来计算的GPU芯片,软件上使用 CANN(类比于CUDA),然后推出机器学习框架异思mindspore(对标Tensorflow/PyTorch),同时mindspore也是开放的,它支持基于 CUDA 的 GPU 以及普通的 CPU芯片,当然mindspore也是使用 Python 来开发,还提供一个 MindStudio 全流程开发工具链。官网 https://www.mindspore.cn/,也就是说华为昇腾是一个完整的生态,不再受外界掣肘。

有资料显示Ascend910性能与NVIDIA-A100相当,这其实很牛逼了,要知道英伟达发展了多少年,我们才多少年。

在人工智能框架使用率方面,TensorFlow、PyTorch、昇思MindSpore和飞桨合计占了86%的市场份额,其中,MindSpore以11%的占比在全球框架里排名第三,逆势进入了AI框架的第一梯队。

2、昇腾当前有哪些不足:

当前昇腾需求的爆发式增长动力主要来自1)AI算力行业自身的快速增长;2)国内自主可控的替代,比如说国家级别的人工智能计算中心,大部分开始会采用昇腾。

当相比于英伟达目前也有不少核心问题:

1,昇腾只能用于华为自身生态中的大模型业务,比如昇腾不能做GPT-3,因为910不支持32位浮点,**而目前大模型训练几乎都要使用32位的浮点,所以昇腾芯片只能利用华为开发的框架(如MindSpore),再加上优化好的大模型,比如盘古CV。

2,生态依然需要完善。英伟达最强大的护城河在于它的生态系统CUDA。目前CANN还有差距。

3,先进制程的卡脖子问题得到了一定解决,但依然需要担忧产能问题。

相关推荐
鸿蒙布道师2 分钟前
鸿蒙NEXT开发动画案例3
android·ios·华为·harmonyos·鸿蒙系统·arkui·huawei
鸿蒙布道师7 分钟前
AI原生手机:三大技术阵营的终极对决与未来展望
android·人工智能·ios·华为·智能手机·ai-native·hauwei
乱世刀疤13 分钟前
商业 |阿里云又丢出了核弹
人工智能·大模型
白开水就盒饭19 分钟前
自然语言处理-词性标注的基本概念
人工智能·自然语言处理·easyui
wanhengidc33 分钟前
AI服务器通常会运用在哪些场景当中?
运维·服务器·人工智能
雪芽蓝域zzs1 小时前
HarmonyOS开发-组件市场
华为·harmonyos
仙人掌_lz1 小时前
从零开始理解FlashAttention:算法细节图解
人工智能·python·深度学习·算法·ai·flashattention
PixelMind1 小时前
【LUT技术专题】ECLUT代码解读
开发语言·python·深度学习·图像超分辨率
scdifsn2 小时前
动手学深度学习12.1. 编译器和解释器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·编辑器·解释器·命令式编程·符号式编程
白杆杆红伞伞2 小时前
02_线性模型(回归线性模型)
人工智能·数据挖掘·回归