2023最新群智能优化算法:巨型犰狳优化算法(Giant Armadillo Optimization,GAO)求解23个基准函数(提供MATLAB代码)

一、巨型犰狳优化算法

巨型犰狳优化算法(Giant Armadillo Optimization,GAO)由Omar Alsayyed等人于2023年提出,该算法模仿了巨型犰狳在野外的自然行为。GAO设计的基本灵感来自巨型犰狳向猎物位置移动和挖掘白蚁丘的狩猎策略。GAO理论在两个阶段进行表达和数学建模:(i)基于模拟巨型犰狳向白蚁丘的运动的探索,以及(ii)基于模拟巨型犰狳的挖掘技能以捕食和撕裂白蚁丘的开发。

参考文献:

1\]Alsayyed O, Hamadneh T, Al-Tarawneh H, Alqudah M, Gochhait S, Leonova I, Malik OP, Dehghani M. Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. *Biomimetics* . 2023; 8(8):619. [Biomimetics \| Free Full-Text \| Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems](https://doi.org/10.3390/biomimetics8080619 "Biomimetics | Free Full-Text | Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems") ### 二、23个函数介绍 ![](https://file.jishuzhan.net/article/1766290208342413314/3ea3af6a4cb623b78dd28fe776bae638.webp) 参考文献: \[1\] Yao X, Liu Y, Lin G M. Evolutionary programming made faster\[J\]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102. ### 三、GAO求解23个函数 #### 3.1部分代码 ``` close all ; clear clc Npop=30;                 Function_name='F1';     % Name of the test function that can be from F1 to F23 (  Tmax=500;               [lb,ub,dim,fobj]=Get_Functions_details(Function_name); [Best_fit,Best_pos,Convergence_curve]=GAO(Npop,Tmax,lb,ub,dim,fobj); figure('Position',[100 100 660 290]) %Draw search space subplot(1,2,1); func_plot(Function_name); title('Parameter space') xlabel('x_1'); ylabel('x_2'); zlabel([Function_name,'( x_1 , x_2 )']) %Draw objective space subplot(1,2,2); semilogy(Convergence_curve,'Color','r','linewidth',3) title('Search space') xlabel('Iteration'); ylabel('Best score obtained so far'); axis tight grid on box on legend('GAO') saveas(gca,[Function_name '.jpg']); display(['The best solution is ', num2str(Best_pos)]); display(['The best fitness value is ', num2str(Best_fit)]); ``` #### 3.2部分结果 ![](https://file.jishuzhan.net/article/1766290208342413314/667449170f4322ed8a6380d54219d797.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/1ae010097e4d5e881281dabf51892fb8.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/6b484720c6cb7f07515b241cff4cbe98.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/901537015a065be880f814b822a931ce.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/68a9ab483fda5febdf1071f9edb22218.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/daabdf8eecbdf8677dc2b0f6c000e40f.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/94d5e69702a2f8c4671e53ed49500a0b.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/c58f6cfc1bf88506e43836b8b3598bbb.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/9b8b982f6a844e800e00a8f54aab0403.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/40305c42ea454c6e81b5f07ec5f7f84d.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/ed1c1cf9a5bce52bbb8a0be7e7ff30f9.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/bac9ed9239c52d602a461f36aae93262.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/1264075e524062a18c4769e2751ab5dd.webp) ### 四、完整MATLAB代码 ![](https://file.jishuzhan.net/article/1766290208342413314/2b174bf4213130a6982d1558035c09d2.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/70101555e7015a15f22e143b48639cf2.webp)

相关推荐
冷雨夜中漫步4 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
颜酱5 小时前
图结构完全解析:从基础概念到遍历实现
javascript·后端·算法
m0_736919106 小时前
C++代码风格检查工具
开发语言·c++·算法
yugi9878386 小时前
基于MATLAB强化学习的单智能体与多智能体路径规划算法
算法·matlab
2501_944934736 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
DuHz6 小时前
超宽带脉冲无线电(Ultra Wideband Impulse Radio, UWB)简介
论文阅读·算法·汽车·信息与通信·信号处理
Polaris北极星少女6 小时前
TRSV优化2
算法
黎雁·泠崖7 小时前
【魔法森林冒险】5/14 Allen类(三):任务进度与状态管理
java·开发语言
代码游侠7 小时前
C语言核心概念复习——网络协议与TCP/IP
linux·运维·服务器·网络·算法
2301_763472467 小时前
C++20概念(Concepts)入门指南
开发语言·c++·算法