2023最新群智能优化算法:巨型犰狳优化算法(Giant Armadillo Optimization,GAO)求解23个基准函数(提供MATLAB代码)

一、巨型犰狳优化算法

巨型犰狳优化算法(Giant Armadillo Optimization,GAO)由Omar Alsayyed等人于2023年提出,该算法模仿了巨型犰狳在野外的自然行为。GAO设计的基本灵感来自巨型犰狳向猎物位置移动和挖掘白蚁丘的狩猎策略。GAO理论在两个阶段进行表达和数学建模:(i)基于模拟巨型犰狳向白蚁丘的运动的探索,以及(ii)基于模拟巨型犰狳的挖掘技能以捕食和撕裂白蚁丘的开发。

参考文献:

1\]Alsayyed O, Hamadneh T, Al-Tarawneh H, Alqudah M, Gochhait S, Leonova I, Malik OP, Dehghani M. Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. *Biomimetics* . 2023; 8(8):619. [Biomimetics \| Free Full-Text \| Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems](https://doi.org/10.3390/biomimetics8080619 "Biomimetics | Free Full-Text | Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems") ### 二、23个函数介绍 ![](https://file.jishuzhan.net/article/1766290208342413314/3ea3af6a4cb623b78dd28fe776bae638.webp) 参考文献: \[1\] Yao X, Liu Y, Lin G M. Evolutionary programming made faster\[J\]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102. ### 三、GAO求解23个函数 #### 3.1部分代码 ``` close all ; clear clc Npop=30;                 Function_name='F1';     % Name of the test function that can be from F1 to F23 (  Tmax=500;               [lb,ub,dim,fobj]=Get_Functions_details(Function_name); [Best_fit,Best_pos,Convergence_curve]=GAO(Npop,Tmax,lb,ub,dim,fobj); figure('Position',[100 100 660 290]) %Draw search space subplot(1,2,1); func_plot(Function_name); title('Parameter space') xlabel('x_1'); ylabel('x_2'); zlabel([Function_name,'( x_1 , x_2 )']) %Draw objective space subplot(1,2,2); semilogy(Convergence_curve,'Color','r','linewidth',3) title('Search space') xlabel('Iteration'); ylabel('Best score obtained so far'); axis tight grid on box on legend('GAO') saveas(gca,[Function_name '.jpg']); display(['The best solution is ', num2str(Best_pos)]); display(['The best fitness value is ', num2str(Best_fit)]); ``` #### 3.2部分结果 ![](https://file.jishuzhan.net/article/1766290208342413314/667449170f4322ed8a6380d54219d797.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/1ae010097e4d5e881281dabf51892fb8.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/6b484720c6cb7f07515b241cff4cbe98.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/901537015a065be880f814b822a931ce.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/68a9ab483fda5febdf1071f9edb22218.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/daabdf8eecbdf8677dc2b0f6c000e40f.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/94d5e69702a2f8c4671e53ed49500a0b.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/c58f6cfc1bf88506e43836b8b3598bbb.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/9b8b982f6a844e800e00a8f54aab0403.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/40305c42ea454c6e81b5f07ec5f7f84d.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/ed1c1cf9a5bce52bbb8a0be7e7ff30f9.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/bac9ed9239c52d602a461f36aae93262.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/1264075e524062a18c4769e2751ab5dd.webp) ### 四、完整MATLAB代码 ![](https://file.jishuzhan.net/article/1766290208342413314/2b174bf4213130a6982d1558035c09d2.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/70101555e7015a15f22e143b48639cf2.webp)

相关推荐
June`7 分钟前
专题二:二叉树的深度搜索(二叉树剪枝)
c++·算法·深度优先·剪枝
盛夏绽放12 分钟前
Python字符串常用方法详解
开发语言·python·c#
C灿灿数模分号11 小时前
2025长三角杯数学建模A题:智能手机产品设计优化与定价问题,赛题发布与思路分析
数学建模·智能手机
好吃的肘子1 小时前
Elasticsearch架构原理
开发语言·算法·elasticsearch·架构·jenkins
胡耀超2 小时前
霍夫圆变换全面解析(OpenCV)
人工智能·python·opencv·算法·计算机视觉·数据挖掘·数据安全
软行2 小时前
LeetCode 每日一题 3341. 到达最后一个房间的最少时间 I + II
数据结构·c++·算法·leetcode·职场和发展
nlog3n2 小时前
Go语言交替打印问题及多种实现方法
开发语言·算法·golang
kaixin_learn_qt_ing2 小时前
Golang
开发语言·后端·golang
ddd...e_bug2 小时前
Shell和Bash介绍
开发语言·bash
How_doyou_do2 小时前
备战菊厂笔试4
python·算法·leetcode