2023最新群智能优化算法:巨型犰狳优化算法(Giant Armadillo Optimization,GAO)求解23个基准函数(提供MATLAB代码)

一、巨型犰狳优化算法

巨型犰狳优化算法(Giant Armadillo Optimization,GAO)由Omar Alsayyed等人于2023年提出,该算法模仿了巨型犰狳在野外的自然行为。GAO设计的基本灵感来自巨型犰狳向猎物位置移动和挖掘白蚁丘的狩猎策略。GAO理论在两个阶段进行表达和数学建模:(i)基于模拟巨型犰狳向白蚁丘的运动的探索,以及(ii)基于模拟巨型犰狳的挖掘技能以捕食和撕裂白蚁丘的开发。

参考文献:

1\]Alsayyed O, Hamadneh T, Al-Tarawneh H, Alqudah M, Gochhait S, Leonova I, Malik OP, Dehghani M. Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. *Biomimetics* . 2023; 8(8):619. [Biomimetics \| Free Full-Text \| Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems](https://doi.org/10.3390/biomimetics8080619 "Biomimetics | Free Full-Text | Giant Armadillo Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems") ### 二、23个函数介绍 ![](https://file.jishuzhan.net/article/1766290208342413314/3ea3af6a4cb623b78dd28fe776bae638.webp) 参考文献: \[1\] Yao X, Liu Y, Lin G M. Evolutionary programming made faster\[J\]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102. ### 三、GAO求解23个函数 #### 3.1部分代码 ``` close all ; clear clc Npop=30;                 Function_name='F1';     % Name of the test function that can be from F1 to F23 (  Tmax=500;               [lb,ub,dim,fobj]=Get_Functions_details(Function_name); [Best_fit,Best_pos,Convergence_curve]=GAO(Npop,Tmax,lb,ub,dim,fobj); figure('Position',[100 100 660 290]) %Draw search space subplot(1,2,1); func_plot(Function_name); title('Parameter space') xlabel('x_1'); ylabel('x_2'); zlabel([Function_name,'( x_1 , x_2 )']) %Draw objective space subplot(1,2,2); semilogy(Convergence_curve,'Color','r','linewidth',3) title('Search space') xlabel('Iteration'); ylabel('Best score obtained so far'); axis tight grid on box on legend('GAO') saveas(gca,[Function_name '.jpg']); display(['The best solution is ', num2str(Best_pos)]); display(['The best fitness value is ', num2str(Best_fit)]); ``` #### 3.2部分结果 ![](https://file.jishuzhan.net/article/1766290208342413314/667449170f4322ed8a6380d54219d797.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/1ae010097e4d5e881281dabf51892fb8.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/6b484720c6cb7f07515b241cff4cbe98.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/901537015a065be880f814b822a931ce.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/68a9ab483fda5febdf1071f9edb22218.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/daabdf8eecbdf8677dc2b0f6c000e40f.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/94d5e69702a2f8c4671e53ed49500a0b.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/c58f6cfc1bf88506e43836b8b3598bbb.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/9b8b982f6a844e800e00a8f54aab0403.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/40305c42ea454c6e81b5f07ec5f7f84d.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/ed1c1cf9a5bce52bbb8a0be7e7ff30f9.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/bac9ed9239c52d602a461f36aae93262.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/1264075e524062a18c4769e2751ab5dd.webp) ### 四、完整MATLAB代码 ![](https://file.jishuzhan.net/article/1766290208342413314/2b174bf4213130a6982d1558035c09d2.webp) ![](https://file.jishuzhan.net/article/1766290208342413314/70101555e7015a15f22e143b48639cf2.webp)

相关推荐
sg_knight6 分钟前
拥抱未来:ECMAScript Modules (ESM) 深度解析
开发语言·前端·javascript·vue·ecmascript·web·esm
LYFlied6 分钟前
【每日算法】LeetCode 17. 电话号码的字母组合
前端·算法·leetcode·面试·职场和发展
程序喵大人21 分钟前
推荐个 C++ 练习平台
开发语言·c++·工具推荐
式51633 分钟前
线性代数(八)非齐次方程组的解的结构
线性代数·算法·机器学习
阿里嘎多学长38 分钟前
2025-12-16 GitHub 热点项目精选
开发语言·程序员·github·代码托管
崇山峻岭之间1 小时前
Matlab学习笔记02
笔记·学习·matlab
乂爻yiyao1 小时前
Java LTS版本重要升级特性对照表
java·开发语言
原来是好奇心1 小时前
深入Spring Boot源码(六):Actuator端点与监控机制深度解析
java·开发语言·源码·springboot
橘颂TA1 小时前
【剑斩OFFER】算法的暴力美学——翻转对
算法·排序算法·结构与算法
叠叠乐1 小时前
robot_state_publisher 参数
java·前端·算法