目标检测:Anchor-Based & Anchor-Free算法模型

Anchor-Based 目标检测

  • Anchor Boxes :Anchor-based 方法使用事先定义的一组锚框(Anchor Boxes)来作为候选框。这些锚框具有不同的尺度(大小)和长宽比(aspect ratio)。模型会预测每个锚框内是否存在目标物体,以及目标的位置(偏移量)和类别。锚框通常由手动设计或数据分析来定义,以适应不同场景和物体的尺寸和形状。

  • 例子:YOLO、Faster R-CNN 和 SSD 等是一些常见的 anchor-based 目标检测算法。

Anchor-Free 目标检测

  • 无锚框 :Anchor-free 方法则不依赖于预定义的锚框。它通过在图像或特征图上直接预测目标的位置和形状,而不是相对于锚框的偏移量**。**这意味着模型不需要提前定义锚框,可以更灵活地处理不同大小和形状的目标。

  • 例子:CenterNet、CornerNet 和 EfficientDet 的某些变种是一些 anchor-free 目标检测算法。主要区别:

    • Anchor-Based 方法依赖于锚框,通常需要手动设计或选择合适的锚框,因此在某些情况下可能需要更多的人工工作。然而,它们在准确性上通常表现得更好。

    • Anchor-Free 方法更加灵活,因为它们不需要锚框,能够更好地适应不同的目标尺寸和形状。但它们可能需要更多的训练数据来实现与 anchor-based 方法相似的准确性。

总结:Anchor-Based 与 Anchor-Free很大区别在于预测回归的是边界框偏移还是边界框本身,因为回归偏移就意味着存在一组基础锚框,被偏移所作用。

相关推荐
天天进步20154 小时前
【InfiniteTalk 源码分析 04】训练策略拆解:如何实现超长视频的生成稳定性?
人工智能·深度学习
imbackneverdie4 小时前
更经济实惠的润色方法,告别“中式英文”!
人工智能·考研·ai·自然语言处理·ai写作·研究生·ai工具
冰西瓜6004 小时前
STL——vector
数据结构·c++·算法
天呐草莓4 小时前
集成学习 (ensemble learning)
人工智能·python·深度学习·算法·机器学习·数据挖掘·集成学习
努力学算法的蒟蒻4 小时前
day45(12.26)——leetcode面试经典150
算法·leetcode·面试
却道天凉_好个秋4 小时前
OpenCV(四十七):FLANN特征匹配
人工智能·opencv·计算机视觉
闻缺陷则喜何志丹4 小时前
【离线查询 前缀和 二分查找 栈】P12271 [蓝桥杯 2024 国 Python B] 括号与字母|普及+
c++·算法·前缀和·蓝桥杯·二分查找··离线查询
Ma0407134 小时前
【论文阅读27】-LMPHM:基于因果网络和大语言模型-增强知识图网络的故障推理诊断
人工智能·语言模型·自然语言处理
Nautiluss4 小时前
一起调试XVF3800麦克风阵列(二)
大数据·人工智能·嵌入式硬件·音频·语音识别·dsp开发
玖日大大4 小时前
AI智能体聚焦场景化应用,赋能产业创新与效率提升
大数据·人工智能