目标检测:Anchor-Based & Anchor-Free算法模型

Anchor-Based 目标检测

  • Anchor Boxes :Anchor-based 方法使用事先定义的一组锚框(Anchor Boxes)来作为候选框。这些锚框具有不同的尺度(大小)和长宽比(aspect ratio)。模型会预测每个锚框内是否存在目标物体,以及目标的位置(偏移量)和类别。锚框通常由手动设计或数据分析来定义,以适应不同场景和物体的尺寸和形状。

  • 例子:YOLO、Faster R-CNN 和 SSD 等是一些常见的 anchor-based 目标检测算法。

Anchor-Free 目标检测

  • 无锚框 :Anchor-free 方法则不依赖于预定义的锚框。它通过在图像或特征图上直接预测目标的位置和形状,而不是相对于锚框的偏移量**。**这意味着模型不需要提前定义锚框,可以更灵活地处理不同大小和形状的目标。

  • 例子:CenterNet、CornerNet 和 EfficientDet 的某些变种是一些 anchor-free 目标检测算法。主要区别:

    • Anchor-Based 方法依赖于锚框,通常需要手动设计或选择合适的锚框,因此在某些情况下可能需要更多的人工工作。然而,它们在准确性上通常表现得更好。

    • Anchor-Free 方法更加灵活,因为它们不需要锚框,能够更好地适应不同的目标尺寸和形状。但它们可能需要更多的训练数据来实现与 anchor-based 方法相似的准确性。

总结:Anchor-Based 与 Anchor-Free很大区别在于预测回归的是边界框偏移还是边界框本身,因为回归偏移就意味着存在一组基础锚框,被偏移所作用。

相关推荐
肥猪猪爸25 分钟前
使用卡尔曼滤波器估计pybullet中的机器人位置
数据结构·人工智能·python·算法·机器人·卡尔曼滤波·pybullet
readmancynn37 分钟前
二分基本实现
数据结构·算法
萝卜兽编程39 分钟前
优先级队列
c++·算法
盼海1 小时前
排序算法(四)--快速排序
数据结构·算法·排序算法
LZXCyrus1 小时前
【杂记】vLLM如何指定GPU单卡/多卡离线推理
人工智能·经验分享·python·深度学习·语言模型·llm·vllm
一直学习永不止步1 小时前
LeetCode题练习与总结:最长回文串--409
java·数据结构·算法·leetcode·字符串·贪心·哈希表
我感觉。1 小时前
【机器学习chp4】特征工程
人工智能·机器学习·主成分分析·特征工程
YRr YRr1 小时前
深度学习神经网络中的优化器的使用
人工智能·深度学习·神经网络
DieYoung_Alive1 小时前
一篇文章了解机器学习(下)
人工智能·机器学习
夏沫的梦1 小时前
生成式AI对产业的影响与冲击
人工智能·aigc