目标检测:Anchor-Based & Anchor-Free算法模型

Anchor-Based 目标检测

  • Anchor Boxes :Anchor-based 方法使用事先定义的一组锚框(Anchor Boxes)来作为候选框。这些锚框具有不同的尺度(大小)和长宽比(aspect ratio)。模型会预测每个锚框内是否存在目标物体,以及目标的位置(偏移量)和类别。锚框通常由手动设计或数据分析来定义,以适应不同场景和物体的尺寸和形状。

  • 例子:YOLO、Faster R-CNN 和 SSD 等是一些常见的 anchor-based 目标检测算法。

Anchor-Free 目标检测

  • 无锚框 :Anchor-free 方法则不依赖于预定义的锚框。它通过在图像或特征图上直接预测目标的位置和形状,而不是相对于锚框的偏移量**。**这意味着模型不需要提前定义锚框,可以更灵活地处理不同大小和形状的目标。

  • 例子:CenterNet、CornerNet 和 EfficientDet 的某些变种是一些 anchor-free 目标检测算法。主要区别:

    • Anchor-Based 方法依赖于锚框,通常需要手动设计或选择合适的锚框,因此在某些情况下可能需要更多的人工工作。然而,它们在准确性上通常表现得更好。

    • Anchor-Free 方法更加灵活,因为它们不需要锚框,能够更好地适应不同的目标尺寸和形状。但它们可能需要更多的训练数据来实现与 anchor-based 方法相似的准确性。

总结:Anchor-Based 与 Anchor-Free很大区别在于预测回归的是边界框偏移还是边界框本身,因为回归偏移就意味着存在一组基础锚框,被偏移所作用。

相关推荐
CV实验室33 分钟前
TIP 2025 | 哈工大&哈佛等提出 TripleMixer:攻克雨雪雾干扰的3D点云去噪网络!
人工智能·计算机视觉·3d·论文
余俊晖2 小时前
一套针对金融领域多模态问答的自适应多层级RAG框架-VeritasFi
人工智能·金融·rag
码农阿树2 小时前
视频解析转换耗时—OpenCV优化摸索路
人工智能·opencv·音视频
丁浩6662 小时前
Python机器学习---2.算法:逻辑回归
python·算法·机器学习
伏小白白白3 小时前
【论文精度-2】求解车辆路径问题的神经组合优化算法:综合展望(Yubin Xiao,2025)
人工智能·算法·机器学习
应用市场3 小时前
OpenCV编程入门:从零开始的计算机视觉之旅
人工智能·opencv·计算机视觉
星域智链3 小时前
宠物智能用品:当毛孩子遇上 AI,是便利还是过度?
人工智能·科技·学习·宠物
小Tomkk3 小时前
Rokid 开发空间小程序 实战
3d·小程序·rokid·jsar
无敌最俊朗@3 小时前
数组-力扣hot56-合并区间
数据结构·算法·leetcode
taxunjishu3 小时前
DeviceNet 转 MODBUS TCP罗克韦尔 ControlLogix PLC 与上位机在汽车零部件涂装生产线漆膜厚度精准控制的通讯配置案例
人工智能·区块链·工业物联网·工业自动化·总线协议