目标检测:Anchor-Based & Anchor-Free算法模型

Anchor-Based 目标检测

  • Anchor Boxes :Anchor-based 方法使用事先定义的一组锚框(Anchor Boxes)来作为候选框。这些锚框具有不同的尺度(大小)和长宽比(aspect ratio)。模型会预测每个锚框内是否存在目标物体,以及目标的位置(偏移量)和类别。锚框通常由手动设计或数据分析来定义,以适应不同场景和物体的尺寸和形状。

  • 例子:YOLO、Faster R-CNN 和 SSD 等是一些常见的 anchor-based 目标检测算法。

Anchor-Free 目标检测

  • 无锚框 :Anchor-free 方法则不依赖于预定义的锚框。它通过在图像或特征图上直接预测目标的位置和形状,而不是相对于锚框的偏移量**。**这意味着模型不需要提前定义锚框,可以更灵活地处理不同大小和形状的目标。

  • 例子:CenterNet、CornerNet 和 EfficientDet 的某些变种是一些 anchor-free 目标检测算法。主要区别:

    • Anchor-Based 方法依赖于锚框,通常需要手动设计或选择合适的锚框,因此在某些情况下可能需要更多的人工工作。然而,它们在准确性上通常表现得更好。

    • Anchor-Free 方法更加灵活,因为它们不需要锚框,能够更好地适应不同的目标尺寸和形状。但它们可能需要更多的训练数据来实现与 anchor-based 方法相似的准确性。

总结:Anchor-Based 与 Anchor-Free很大区别在于预测回归的是边界框偏移还是边界框本身,因为回归偏移就意味着存在一组基础锚框,被偏移所作用。

相关推荐
好奇龙猫1 小时前
【人工智能学习-AI入试相关题目练习-第七次】
人工智能·学习
Mao.O4 小时前
开源项目“AI思维圆桌”的介绍和对于当前AI编程的思考
人工智能
jake don4 小时前
AI 深度学习路线
人工智能·深度学习
夏鹏今天学习了吗4 小时前
【LeetCode热题100(87/100)】最小路径和
算法·leetcode·职场和发展
信创天地4 小时前
信创场景软件兼容性测试实战:适配国产软硬件生态,破解运行故障难题
人工智能·开源·dubbo·运维开发·risc-v
哈哈不让取名字4 小时前
基于C++的爬虫框架
开发语言·c++·算法
幻云20104 小时前
Python深度学习:从筑基到登仙
前端·javascript·vue.js·人工智能·python
bst@微胖子5 小时前
LlamaIndex之核心概念及部署以及入门案例
pytorch·深度学习·机器学习
无风听海5 小时前
CBOW 模型中的输出层
人工智能·机器学习
汇智信科5 小时前
智慧矿山和工业大数据解决方案“智能设备管理系统”
大数据·人工智能·工业大数据·智能矿山·汇智信科·智能设备管理系统