目标检测:Anchor-Based & Anchor-Free算法模型

Anchor-Based 目标检测

  • Anchor Boxes :Anchor-based 方法使用事先定义的一组锚框(Anchor Boxes)来作为候选框。这些锚框具有不同的尺度(大小)和长宽比(aspect ratio)。模型会预测每个锚框内是否存在目标物体,以及目标的位置(偏移量)和类别。锚框通常由手动设计或数据分析来定义,以适应不同场景和物体的尺寸和形状。

  • 例子:YOLO、Faster R-CNN 和 SSD 等是一些常见的 anchor-based 目标检测算法。

Anchor-Free 目标检测

  • 无锚框 :Anchor-free 方法则不依赖于预定义的锚框。它通过在图像或特征图上直接预测目标的位置和形状,而不是相对于锚框的偏移量**。**这意味着模型不需要提前定义锚框,可以更灵活地处理不同大小和形状的目标。

  • 例子:CenterNet、CornerNet 和 EfficientDet 的某些变种是一些 anchor-free 目标检测算法。主要区别:

    • Anchor-Based 方法依赖于锚框,通常需要手动设计或选择合适的锚框,因此在某些情况下可能需要更多的人工工作。然而,它们在准确性上通常表现得更好。

    • Anchor-Free 方法更加灵活,因为它们不需要锚框,能够更好地适应不同的目标尺寸和形状。但它们可能需要更多的训练数据来实现与 anchor-based 方法相似的准确性。

总结:Anchor-Based 与 Anchor-Free很大区别在于预测回归的是边界框偏移还是边界框本身,因为回归偏移就意味着存在一组基础锚框,被偏移所作用。

相关推荐
泉崎3 分钟前
11.7比赛总结
数据结构·算法
你好helloworld5 分钟前
滑动窗口最大值
数据结构·算法·leetcode
学术头条20 分钟前
AI 的「phone use」竟是这样练成的,清华、智谱团队发布 AutoGLM 技术报告
人工智能·科技·深度学习·语言模型
准橙考典21 分钟前
怎么能更好的通过驾考呢?
人工智能·笔记·自动驾驶·汽车·学习方法
ai_xiaogui25 分钟前
AIStarter教程:快速学会卸载AI项目【AI项目管理平台】
人工智能·ai作画·语音识别·ai写作·ai软件
孙同学要努力29 分钟前
《深度学习》——深度学习基础知识(全连接神经网络)
人工智能·深度学习·神经网络
AI街潜水的八角44 分钟前
基于C++的决策树C4.5机器学习算法(不调包)
c++·算法·决策树·机器学习
白榆maple1 小时前
(蓝桥杯C/C++)——基础算法(下)
算法
喵~来学编程啦1 小时前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
JSU_曾是此间年少1 小时前
数据结构——线性表与链表
数据结构·c++·算法