【Python】OpenCV-使用ResNet50进行图像分类

使用ResNet50进行图像分类

如何使用ResNet50模型对图像进行分类。

python 复制代码
import os
import cv2
import numpy as np
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions
from tensorflow.keras.preprocessing import image

# 设置代理
os.environ["HTTP_PROXY"] = "http://127.0.0.1:1080"
os.environ["HTTPS_PROXY"] = "http://127.0.0.1:1080"

# 加载ResNet50模型
model = ResNet50(weights='imagenet')

# 读取和预处理图像
def preprocess_image(img_path):
    # 加载图像并调整大小为(224, 224)
    img = image.load_img(img_path, target_size=(224, 224))
    
    # 将图像转换为numpy数组
    img_array = image.img_to_array(img)
    
    # 在第0轴上添加维度,将其变为(1, 224, 224, 3)
    img_array = np.expand_dims(img_array, axis=0)
    
    # 对图像进行预处理,以适应ResNet50模型的输入要求
    img_array = preprocess_input(img_array)
    
    return img_array

# 加载图像
img_path = 'pandas.jpg'
img = preprocess_image(img_path)

# 进行预测
predictions = model.predict(img)

# 解码预测结果,获取前三个预测结果
decoded_predictions = decode_predictions(predictions, top=3)[0]

# 打印结果
print("Predictions:")
for i, (imagenet_id, label, score) in enumerate(decoded_predictions):
    print(f"{i + 1}: {label} ({score:.2f})")

# 显示图像
img = cv2.imread(img_path)
cv2.imshow('Image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 测试图片:

  • 运行效果:

  • 翻译一下

相关推荐
偶尔微微一笑1 小时前
AI网络渗透kali应用(gptshell)
linux·人工智能·python·自然语言处理·编辑器
jndingxin1 小时前
OpenCV 图形API(60)颜色空间转换-----将图像从 YUV 色彩空间转换为 RGB 色彩空间函数YUV2RGB()
人工智能·opencv·计算机视觉
知舟不叙2 小时前
OpenCV中的SIFT特征提取
人工智能·opencv·计算机视觉
搞机小能手2 小时前
六个能够白嫖学习资料的网站
笔记·学习·分类
船长@Quant2 小时前
文档构建:Sphinx全面使用指南 — 基础篇
python·markdown·sphinx·文档构建
喵手2 小时前
从 Java 到 Kotlin:在现有项目中迁移的最佳实践!
java·python·kotlin
liuweidong08022 小时前
【Pandas】pandas DataFrame rsub
开发语言·python·pandas
CH3_CH2_CHO3 小时前
不吃【Numpy】版
开发语言·python·numpy
-曾牛4 小时前
企业级AI开发利器:Spring AI框架深度解析与实战
java·人工智能·python·spring·ai·rag·大模型应用
Light604 小时前
智启未来:深度解析Python Transformers库及其应用场景
开发语言·python·深度学习·自然语言处理·预训练模型·transformers库 |·|应用场景