【Python】OpenCV-使用ResNet50进行图像分类

使用ResNet50进行图像分类

如何使用ResNet50模型对图像进行分类。

python 复制代码
import os
import cv2
import numpy as np
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions
from tensorflow.keras.preprocessing import image

# 设置代理
os.environ["HTTP_PROXY"] = "http://127.0.0.1:1080"
os.environ["HTTPS_PROXY"] = "http://127.0.0.1:1080"

# 加载ResNet50模型
model = ResNet50(weights='imagenet')

# 读取和预处理图像
def preprocess_image(img_path):
    # 加载图像并调整大小为(224, 224)
    img = image.load_img(img_path, target_size=(224, 224))
    
    # 将图像转换为numpy数组
    img_array = image.img_to_array(img)
    
    # 在第0轴上添加维度,将其变为(1, 224, 224, 3)
    img_array = np.expand_dims(img_array, axis=0)
    
    # 对图像进行预处理,以适应ResNet50模型的输入要求
    img_array = preprocess_input(img_array)
    
    return img_array

# 加载图像
img_path = 'pandas.jpg'
img = preprocess_image(img_path)

# 进行预测
predictions = model.predict(img)

# 解码预测结果,获取前三个预测结果
decoded_predictions = decode_predictions(predictions, top=3)[0]

# 打印结果
print("Predictions:")
for i, (imagenet_id, label, score) in enumerate(decoded_predictions):
    print(f"{i + 1}: {label} ({score:.2f})")

# 显示图像
img = cv2.imread(img_path)
cv2.imshow('Image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 测试图片:

  • 运行效果:

  • 翻译一下

相关推荐
IT古董29 分钟前
第四章:大模型(LLM)】06.langchain原理-(3)LangChain Prompt 用法
java·人工智能·python
fantasy_arch5 小时前
pytorch例子计算两张图相似度
人工智能·pytorch·python
WBluuue7 小时前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
赴3357 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩7 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
RPA+AI十二工作室7 小时前
亚马逊店铺绩效巡检_影刀RPA源码解读
chrome·python·rpa·影刀
小艳加油8 小时前
Python机器学习与深度学习;Transformer模型/注意力机制/目标检测/语义分割/图神经网络/强化学习/生成式模型/自监督学习/物理信息神经网络等
python·深度学习·机器学习·transformer
学行库小秘10 小时前
ANN神经网络回归预测模型
人工智能·python·深度学习·神经网络·算法·机器学习·回归
Yn31210 小时前
在 Python 中使用 json 模块的完整指南
开发语言·python·json
秋难降10 小时前
线段树的深度解析(最长递增子序列类解题步骤)
数据结构·python·算法