机器学习——PPO补充

On-policy vs Off-policy

  • 今天跟环境互动,并学习是on-policy

  • 只是在旁边看,就是Off-policy

  • 从p中选q个重要的,需要加一个weight p(x)/q(x)

  • p和q不能相差太多

  • 采样数太少导致分布差很多,导致weight发生变化

On-Policy -> Off-Policy


得到新的loss函数

PPO

  • 衡量 θ \theta θ和 θ ′ \theta' θ′之间的kl散度,衡量二者行为上的相似性,而不是参数上的相似性
  • Adaptive KL Penalty
  • 绿色的线是第一项,蓝色是第二项
相关推荐
EkihzniY5 小时前
AI+OCR:解锁数字化新视界
人工智能·ocr
东哥说-MES|从入门到精通5 小时前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
铅笔侠_小龙虾5 小时前
深度学习理论推导--梯度下降法
人工智能·深度学习
kaikaile19956 小时前
基于遗传算法的车辆路径问题(VRP)解决方案MATLAB实现
开发语言·人工智能·matlab
lpfasd1236 小时前
第1章_LangGraph的背景与设计哲学
人工智能
Aevget6 小时前
界面组件Kendo UI for React 2025 Q3亮点 - AI功能全面提升
人工智能·react.js·ui·界面控件·kendo ui·ui开发
桜吹雪7 小时前
LangChain.js/DeepAgents可观测性
javascript·人工智能
&&Citrus7 小时前
【杂谈】SNNU公共计算平台:深度学习服务器配置与远程开发指北
服务器·人工智能·vscode·深度学习·snnu
乌恩大侠7 小时前
Spark 机器上修改缓冲区大小
人工智能·usrp
STLearner7 小时前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘