机器学习——PPO补充

On-policy vs Off-policy

  • 今天跟环境互动,并学习是on-policy

  • 只是在旁边看,就是Off-policy

  • 从p中选q个重要的,需要加一个weight p(x)/q(x)

  • p和q不能相差太多

  • 采样数太少导致分布差很多,导致weight发生变化

On-Policy -> Off-Policy


得到新的loss函数

PPO

  • 衡量 θ \theta θ和 θ ′ \theta' θ′之间的kl散度,衡量二者行为上的相似性,而不是参数上的相似性
  • Adaptive KL Penalty
  • 绿色的线是第一项,蓝色是第二项
相关推荐
独自归家的兔3 小时前
基于 cosyvoice-v3-plus 的 个人音色复刻 (华为OBS)
人工智能·华为·语音识别
Legend NO243 小时前
如何构建自己高质量语料库?
人工智能·非结构化数据
Hcoco_me3 小时前
大模型面试题23:对比学习原理-从通俗理解到核心逻辑(通用AI视角)
人工智能·rnn·深度学习·学习·自然语言处理·word2vec
Java后端的Ai之路3 小时前
【神经网络基础】-神经网络优化方法全解析
人工智能·深度学习·神经网络·机器学习
高洁013 小时前
深度学习—卷积神经网络(2)
人工智能·深度学习·机器学习·transformer·知识图谱
一招定胜负3 小时前
项目案例:卷积神经网络实现食物图片分类代码详细解析
人工智能·分类·cnn
景联文科技3 小时前
景联文 × 麦迪:归一医疗数据枢纽,构建AI医疗新底座
大数据·人工智能·数据标注
wyg_0311133 小时前
机器问道:大模型RAG 解读凡人修仙传
人工智能·python·transformer
未来之窗软件服务3 小时前
幽冥大陆(七十九)Python 水果识别训练视频识别 —东方仙盟练气期
开发语言·人工智能·python·水果识别·仙盟创梦ide·东方仙盟
光影少年3 小时前
AI前端开发需要会哪些及未来发展?
前端·人工智能·前端框架