机器学习——PPO补充

On-policy vs Off-policy

  • 今天跟环境互动,并学习是on-policy

  • 只是在旁边看,就是Off-policy

  • 从p中选q个重要的,需要加一个weight p(x)/q(x)

  • p和q不能相差太多

  • 采样数太少导致分布差很多,导致weight发生变化

On-Policy -> Off-Policy


得到新的loss函数

PPO

  • 衡量 θ \theta θ和 θ ′ \theta' θ′之间的kl散度,衡量二者行为上的相似性,而不是参数上的相似性
  • Adaptive KL Penalty
  • 绿色的线是第一项,蓝色是第二项
相关推荐
3DVisionary6 分钟前
3D-DIC与机器学习协同模拟材料应力-应变本构行为研究
人工智能·机器学习·3d·3d-dic技术 机器学习·应力-应变本构行为·卷积神经网络(ecnn)·数字图像相关法(dic)
神经星星8 分钟前
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
人工智能·深度学习·机器学习
神经星星8 分钟前
【vLLM 学习】调试技巧
人工智能·机器学习·编程语言
呵呵哒( ̄▽ ̄)"9 分钟前
线性代数:同解(1)
python·线性代数·机器学习
SweetCode14 分钟前
裴蜀定理:整数解的奥秘
数据结构·python·线性代数·算法·机器学习
程序员Linc27 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
xcLeigh35 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
果冻人工智能38 分钟前
如何有效应对 RAG 中的复杂查询?
人工智能
2305_797882091 小时前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序
果冻人工智能1 小时前
向量搜索中常见的8个错误(以及如何避免它们)
人工智能