机器学习——PPO补充

On-policy vs Off-policy

  • 今天跟环境互动,并学习是on-policy

  • 只是在旁边看,就是Off-policy

  • 从p中选q个重要的,需要加一个weight p(x)/q(x)

  • p和q不能相差太多

  • 采样数太少导致分布差很多,导致weight发生变化

On-Policy -> Off-Policy


得到新的loss函数

PPO

  • 衡量 θ \theta θ和 θ ′ \theta' θ′之间的kl散度,衡量二者行为上的相似性,而不是参数上的相似性
  • Adaptive KL Penalty
  • 绿色的线是第一项,蓝色是第二项
相关推荐
yzx9910133 小时前
接口协议全解析:从HTTP到gRPC,如何选择适合你的通信方案?
网络·人工智能·网络协议·flask·pygame
只说证事4 小时前
2025年数字公共治理专业重点学什么内容?(详细指南)
人工智能
LeeZhao@4 小时前
【AI推理部署】Docker篇04—Docker自动构建镜像
人工智能·docker·容器
程思扬4 小时前
利用JSONCrack与cpolar提升数据可视化及跨团队协作效率
网络·人工智能·经验分享·docker·信息可视化·容器·架构
南方者4 小时前
它的 AI Agent 凭什么能擦出火花?!
人工智能·ai编程
心动啊1214 小时前
深度神经网络1——梯度问题+标签数不够问题
人工智能·神经网络·dnn
南方者4 小时前
基于Amazon Bedrock Agent 的两个服务示例的完整流程与详细内容,包含技术架构、实现细节、交互逻辑及扩展能力
人工智能·ai编程·敏捷开发
小王爱学人工智能4 小时前
OpenCV一些进阶操作
人工智能·opencv·计算机视觉
新智元4 小时前
起猛了!这个国家任命 AI 为「部长」:全球首个,手握实权,招标 100% 透明
人工智能·openai
张较瘦_4 小时前
[论文阅读] 人工智能 + 软件工程 | 大语言模型驱动的多来源漏洞影响库识别研究解析
论文阅读·人工智能·语言模型