机器学习——PPO补充

On-policy vs Off-policy

  • 今天跟环境互动,并学习是on-policy

  • 只是在旁边看,就是Off-policy

  • 从p中选q个重要的,需要加一个weight p(x)/q(x)

  • p和q不能相差太多

  • 采样数太少导致分布差很多,导致weight发生变化

On-Policy -> Off-Policy


得到新的loss函数

PPO

  • 衡量 θ \theta θ和 θ ′ \theta' θ′之间的kl散度,衡量二者行为上的相似性,而不是参数上的相似性
  • Adaptive KL Penalty
  • 绿色的线是第一项,蓝色是第二项
相关推荐
weixin_437497771 天前
读书笔记:Context Engineering 2.0 (上)
人工智能·nlp
喝拿铁写前端1 天前
前端开发者使用 AI 的能力层级——从表面使用到工程化能力的真正分水岭
前端·人工智能·程序员
goodfat1 天前
Win11如何关闭自动更新 Win11暂停系统更新的设置方法【教程】
人工智能·禁止windows更新·win11优化工具
北京领雁科技1 天前
领雁科技反洗钱案例白皮书暨人工智能在反洗钱系统中的深度应用
人工智能·科技·安全
落叶,听雪1 天前
河南建站系统哪个好
大数据·人工智能·python
清月电子1 天前
杰理AC109N系列AC1082 AC1074 AC1090 芯片停产替代及资料说明
人工智能·单片机·嵌入式硬件·物联网
Dev7z1 天前
非线性MPC在自动驾驶路径跟踪与避障控制中的应用及Matlab实现
人工智能·matlab·自动驾驶
七月shi人1 天前
AI浪潮下,前端路在何方
前端·人工智能·ai编程
橙汁味的风1 天前
1隐马尔科夫模型HMM与条件随机场CRF
人工智能·深度学习·机器学习
极客小云1 天前
【生物医学NLP信息抽取:药物识别、基因识别与化学物质实体识别教程与应用】
python·机器学习·nlp