基于逻辑回归实现乳腺癌预测(机械学习与大数据)

基于逻辑回归实现乳腺癌预测

将乳腺癌数据集拆分成训练集和测试集,搭建一个逻辑回归模型,对训练集进行训练,然后分别对训练集和测试集进行预测。输出以下结果:

该模型在训练集上的准确率,在测试集上的准确率、召回率和精确率。

源码

python 复制代码
from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import recall_score,precision_score,classification_report,accuracy_score

cancer = load_breast_cancer()
x_train,x_test,y_train,y_test = train_test_split(cancer.data,cancer.target,test_size=0.2)
model = LogisticRegression(max_iter=10000)
model.fit(x_train,y_train)
train_score = model.score(x_train,y_train)
test_score = model.score(x_test,y_test)

print("1 基于逻辑回归实现乳腺癌预测")
print("李思强  20201107148")
print("训练集")
print("准确率:",train_score)

y_pred = model.predict(x_test)
accuracy_score_value = accuracy_score(y_test,y_pred)
recall_score_value = recall_score(y_test,y_pred)
precision_score_value = precision_score(y_test,y_pred)

print("测试集")
print("准确率:",accuracy_score_value)
print("召回率:",recall_score_value)
print("精确率:",precision_score_value)

运行结果

相关推荐
带娃的IT创业者29 分钟前
机器学习实战(8):降维技术——主成分分析(PCA)
人工智能·机器学习·分类·聚类
饮长安千年月2 小时前
Linksys WRT54G路由器溢出漏洞分析–运行环境修复
网络·物联网·学习·安全·机器学习
flying robot3 小时前
人工智能基础之数学基础:01高等数学基础
人工智能·机器学习
Moutai码农3 小时前
机器学习-生命周期
人工智能·python·机器学习·数据挖掘
Jackilina_Stone4 小时前
【DL】浅谈深度学习中的知识蒸馏 | 输出层知识蒸馏
人工智能·深度学习·机器学习·蒸馏
尼尔森系4 小时前
排序与算法:希尔排序
c语言·算法·排序算法
AC使者4 小时前
A. C05.L08.贪心算法入门
算法·贪心算法
冠位观测者4 小时前
【Leetcode 每日一题】624. 数组列表中的最大距离
数据结构·算法·leetcode
yadanuof5 小时前
leetcode hot100 滑动窗口&子串
算法·leetcode
可爱de艺艺5 小时前
Go入门之函数
算法