数据分析-Pandas两种分组箱线图比较

数据分析-Pandas两种分组箱线图比较

数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?

数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

本文用到的样例数据:

Titanic数据

空气质量监测 N O 2 NO_2 NO2数据

样例代码:

源代码参考 Pandas如何重塑数据表

源代码参考 python数据分析-数据表读写到pandas

导入关键模块

python 复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

plt.close("all")

两种分组方法,实质上是比较的内容进行分组比较的两种思路。实际工作中很常见,特地摘出来,以飨读者。

一种分组箱线图例子

这种先把列分开,随后才按照数值g组进行分开 A,B。

先按照DataFrame的column分两个大图,再细分。

以下是调用的样例:

python 复制代码
np.random.seed(1234)

df_box = pd.DataFrame(np.random.randn(50, 2))
df_box["g"] = np.random.choice(["A", "B"], size=50)
df_box.loc[df_box["g"] == "B", 1] += 3

bp = df_box.boxplot(by="g")

plt.show()
plt.close("all")

另一种分组箱线图例子

这种先按照数值g组分开A,B,然后按照列分开。

先按照g组数值分开两个大图,再按照column细分。

例如:

python 复制代码
np.random.seed(1234)

df_box = pd.DataFrame(np.random.randn(50, 2))
df_box["g"] = np.random.choice(["A", "B"], size=50)
df_box.loc[df_box["g"] == "B", 1] += 3

bp = df_box.groupby("g").boxplot()

plt.show()
plt.close("all")

对照两种分组,可自行琢磨下。

以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。

后面介绍下其他的展示形式。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

相关推荐
qq_4369621818 分钟前
AI数据分析中的伪需求场景:现状、挑战与突破路径
人工智能·数据挖掘·数据分析·ai数据分析
小名叫咸菜21 分钟前
电商双十一美妆数据分析
数据分析
aiweker1 小时前
python数据分析(九):Pandas 分类数据(Categorical Data)处理
python·数据分析·pandas
鸿蒙布道师1 小时前
ChatGPT深度研究功能革新:GitHub直连与强化微调
人工智能·深度学习·神经网络·自然语言处理·chatgpt·数据挖掘·github
PersistJiao1 小时前
数据统计的意义:钱包余额变动
数据分析
Navicat中国2 小时前
Navicat BI 数据分析功能上线 | 数据洞察新方法
数据库·人工智能·信息可视化·数据挖掘·数据分析·navicat·bi
kngines2 小时前
【PostgreSQL数据分析实战:从数据清洗到可视化全流程】电商数据分析案例-9.3 商品销售预测模型
postgresql·数据分析·模型评估·arima·时间序列模型·prophet·mape
audyxiao0012 小时前
人工智能顶会ICLR 2025论文分享│PointOBB-v2:更简单、更快、更强的单点监督有向目标检测
人工智能·目标检测·计算机视觉·数据挖掘·主成分分析·单点监督
qq_390369534 小时前
AWS之数据分析类产品
大数据·数据分析·aws
TravelLight924 小时前
Python pandas 向excel追加数据,不覆盖之前的数据
python·excel·pandas