分布式执行引擎ray入门--(2)Ray Data

目录

一、overview

基础代码

核心API:

二、核心概念

[2.1 加载数据](#2.1 加载数据)

从S3上读

从本地读:

其他读取方式

读取分布式数据(spark)

[从ML libraries 库中读取(不支持并行读取)](#从ML libraries 库中读取(不支持并行读取))

从sql中读取

[2.2 变换数据](#2.2 变换数据)

map

flat_map

[Transforming batches](#Transforming batches)

[Shuffling rows](#Shuffling rows)

[Repartitioning data](#Repartitioning data)

[2.3 消费数据](#2.3 消费数据)

[1) 按行遍历](#1) 按行遍历)

2)按batch遍历

3)遍历batch时shuffle

4)为分布式并行训练分割数据

[2.4 保存数据](#2.4 保存数据)

保存文件

修改分区数

将数据转换为python对象

将数据转换为分布式数据(spark)


今天来带大家一起来学习下ray中对数据的操作,还是非常简洁的。

一、overview

基础代码

from typing import Dict
import numpy as np
import ray

# Create datasets from on-disk files, Python objects, and cloud storage like S3.
ds = ray.data.read_csv("s3://anonymous@ray-example-data/iris.csv")

# Apply functions to transform data. Ray Data executes transformations in parallel.
def compute_area(batch: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
    length = batch["petal length (cm)"]
    width = batch["petal width (cm)"]
    batch["petal area (cm^2)"] = length * width
    return batch

transformed_ds = ds.map_batches(compute_area)

# Iterate over batches of data.
for batch in transformed_ds.iter_batches(batch_size=4):
    print(batch)

# Save dataset contents to on-disk files or cloud storage.
transformed_ds.write_parquet("local:///tmp/iris/")

使用ray.data可以方便地从硬盘、python对象、S3上读取文件

最后写入云端

核心API:

二、核心概念

2.1 加载数据

从S3上读

import ray

#加载csv文件
ds = ray.data.read_csv("s3://anonymous@air-example-data/iris.csv")
print(ds.schema())
ds.show(limit=1)

#加载parquet文件
ds = ray.data.read_parquet("s3://anonymous@ray-example-data/iris.parquet")

#加载image
ds = ray.data.read_images("s3://anonymous@ray-example-data/batoidea/JPEGImages/")

# Text
ds = ray.data.read_text("s3://anonymous@ray-example-data/this.txt")

# binary
ds = ray.data.read_binary_files("s3://anonymous@ray-example-data/documents")

#tfrecords
ds = ray.data.read_tfrecords("s3://anonymous@ray-example-data/iris.tfrecords")

从本地读:

ds = ray.data.read_parquet("local:///tmp/iris.parquet")
  • 处理压缩文件

    ds = ray.data.read_csv(
    "s3://anonymous@ray-example-data/iris.csv.gz",
    arrow_open_stream_args={"compression": "gzip"},
    )

其他读取方式

import ray

# 从python对象里获取
ds = ray.data.from_items([
    {"food": "spam", "price": 9.34},
    {"food": "ham", "price": 5.37},
    {"food": "eggs", "price": 0.94}
])


ds = ray.data.from_items([1, 2, 3, 4, 5])

# 从numpy里获取
array = np.ones((3, 2, 2))
ds = ray.data.from_numpy(array)

# 从pandas里获取
df = pd.DataFrame({
    "food": ["spam", "ham", "eggs"],
    "price": [9.34, 5.37, 0.94]
})
ds = ray.data.from_pandas(df)

# 从py arrow里获取

table = pa.table({
    "food": ["spam", "ham", "eggs"],
    "price": [9.34, 5.37, 0.94]
})
ds = ray.data.from_arrow(table)

读取分布式数据(spark)

import ray
import raydp

spark = raydp.init_spark(app_name="Spark -> Datasets Example",
                        num_executors=2,
                        executor_cores=2,
                        executor_memory="500MB")
df = spark.createDataFrame([(i, str(i)) for i in range(10000)], ["col1", "col2"])
ds = ray.data.from_spark(df)

ds.show(3)

从ML libraries 库中读取(不支持并行读取)

import ray.data
from datasets import load_dataset

# 从huggingface里读取(不支持并行读取)
hf_ds = load_dataset("wikitext", "wikitext-2-raw-v1")
ray_ds = ray.data.from_huggingface(hf_ds["train"])
ray_ds.take(2)


# 从TensorFlow中读取(不支持并行读取)
import ray
import tensorflow_datasets as tfds

tf_ds, _ = tfds.load("cifar10", split=["train", "test"])
ds = ray.data.from_tf(tf_ds)

print(ds)

从sql中读取

import mysql.connector

import ray

def create_connection():
    return mysql.connector.connect(
        user="admin",
        password=...,
        host="example-mysql-database.c2c2k1yfll7o.us-west-2.rds.amazonaws.com",
        connection_timeout=30,
        database="example",
    )

# Get all movies
dataset = ray.data.read_sql("SELECT * FROM movie", create_connection)
# Get movies after the year 1980
dataset = ray.data.read_sql(
    "SELECT title, score FROM movie WHERE year >= 1980", create_connection
)
# Get the number of movies per year
dataset = ray.data.read_sql(
    "SELECT year, COUNT(*) FROM movie GROUP BY year", create_connection
)

Ray还支持从BigQuery和MongoDB中读取,篇幅问题,不赘述了。

2.2 变换数据

变换默认是lazy,直到遍历、保存、检视数据集时才执行

map

import os
from typing import Any, Dict
import ray

def parse_filename(row: Dict[str, Any]) -> Dict[str, Any]:
    row["filename"] = os.path.basename(row["path"])
    return row

ds = (
    ray.data.read_images("s3://anonymous@ray-example-data/image-datasets/simple", include_paths=True)
    .map(parse_filename)
)

flat_map

from typing import Any, Dict, List
import ray

def duplicate_row(row: Dict[str, Any]) -> List[Dict[str, Any]]:
    return [row] * 2

print(
    ray.data.range(3)
    .flat_map(duplicate_row)
    .take_all()
)

# 结果:
# [{'id': 0}, {'id': 0}, {'id': 1}, {'id': 1}, {'id': 2}, {'id': 2}]
# 原先的元素都变成2个

Transforming batches

from typing import Dict
import numpy as np
import ray

def increase_brightness(batch: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
    batch["image"] = np.clip(batch["image"] + 4, 0, 255)
    return batch


# batch_format:指定batch类型,可不加
ds = (
    ray.data.read_images("s3://anonymous@ray-example-data/image-datasets/simple")
    .map_batches(increase_brightness, batch_format="numpy")
)

如果初始化较贵,使用类而不是函数,这样每次调用类的时候,进行初始化。类有状态,而函数没有状态。

并行度可以指定(min,max)来自由调整

Shuffling rows

import ray

ds = (
    ray.data.read_images("s3://anonymous@ray-example-data/image-datasets/simple")
    .random_shuffle()
)

Repartitioning data

import ray

ds = ray.data.range(10000, parallelism=1000)

# Repartition the data into 100 blocks. Since shuffle=False, Ray Data will minimize
# data movement during this operation by merging adjacent blocks.
ds = ds.repartition(100, shuffle=False).materialize()

# Repartition the data into 200 blocks, and force a full data shuffle.
# This operation will be more expensive
ds = ds.repartition(200, shuffle=True).materialize()

2.3 消费数据

1) 按行遍历

import ray

ds = ray.data.read_csv("s3://anonymous@air-example-data/iris.csv")

for row in ds.iter_rows():
    print(row)

2)按batch遍历

numpy、pandas、torch、tf使用不同的API遍历batch

# numpy
import ray
ds = ray.data.read_images("s3://anonymous@ray-example-data/image-datasets/simple")
for batch in ds.iter_batches(batch_size=2, batch_format="numpy"):
    print(batch)


# pandas
import ray
ds = ray.data.read_csv("s3://anonymous@air-example-data/iris.csv")
for batch in ds.iter_batches(batch_size=2, batch_format="pandas"):
    print(batch)


# torch
import ray
ds = ray.data.read_images("s3://anonymous@ray-example-data/image-datasets/simple")
for batch in ds.iter_torch_batches(batch_size=2):
    print(batch)


# tf
import ray

ds = ray.data.read_csv("s3://anonymous@air-example-data/iris.csv")

tf_dataset = ds.to_tf(
    feature_columns="sepal length (cm)",
    label_columns="target",
    batch_size=2
)
for features, labels in tf_dataset:
    print(features, labels)

3)遍历batch时shuffle

只需要在遍历batch时增加local_shuffle_buffer_size参数即可。

非全局洗牌,但性能更好。

import ray

ds = ray.data.read_images("s3://anonymous@ray-example-data/image-datasets/simple")

for batch in ds.iter_batches(
    batch_size=2,
    batch_format="numpy",
    local_shuffle_buffer_size=250,
):
    print(batch)

4)为分布式并行训练分割数据

import ray

@ray.remote
class Worker:

    def train(self, data_iterator):
        for batch in data_iterator.iter_batches(batch_size=8):
            pass

ds = ray.data.read_csv("s3://anonymous@air-example-data/iris.csv")
workers = [Worker.remote() for _ in range(4)]
shards = ds.streaming_split(n=4, equal=True)
ray.get([w.train.remote(s) for w, s in zip(workers, shards)])

2.4 保存数据

保存文件

非常类似pandas保存文件,唯一的区别保存本地文件时需要加入local://前缀。

注意:如果不加local://前缀,ray则会将不同分区的数据写在不同节点上

import ray

ds = ray.data.read_csv("s3://anonymous@ray-example-data/iris.csv")

# local
ds.write_parquet("local:///tmp/iris/")

# s3
ds.write_parquet("s3://my-bucket/my-folder")

修改分区数

import os
import ray

ds = ray.data.read_csv("s3://anonymous@ray-example-data/iris.csv")
ds.repartition(2).write_csv("/tmp/two_files/")

print(os.listdir("/tmp/two_files/"))

将数据转换为python对象

import ray

ds = ray.data.read_csv("s3://anonymous@ray-example-data/iris.csv")

df = ds.to_pandas()
print(df)

将数据转换为分布式数据(spark)

import ray
import raydp

spark = raydp.init_spark(
    app_name = "example",
    num_executors = 1,
    executor_cores = 4,
    executor_memory = "512M"
)

ds = ray.data.read_csv("s3://anonymous@ray-example-data/iris.csv")
df = ds.to_spark(spark)
相关推荐
hong16168815 分钟前
跨模态对齐与跨领域学习
学习
阿伟来咯~1 小时前
记录学习react的一些内容
javascript·学习·react.js
Suckerbin1 小时前
Hms?: 1渗透测试
学习·安全·网络安全
不能再留遗憾了1 小时前
RabbitMQ 高级特性——消息分发
分布式·rabbitmq·ruby
水豚AI课代表1 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
聪明的墨菲特i2 小时前
Python爬虫学习
爬虫·python·学习
茶馆大橘2 小时前
微服务系列六:分布式事务与seata
分布式·docker·微服务·nacos·seata·springcloud
Diamond技术流2 小时前
从0开始学习Linux——网络配置
linux·运维·网络·学习·安全·centos
斑布斑布2 小时前
【linux学习2】linux基本命令行操作总结
linux·运维·服务器·学习
Chef_Chen2 小时前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习