分布式执行引擎ray入门--(3)Ray Train

Ray Train中包含4个部分

  1. Training function: 包含训练模型逻辑的函数

  2. Worker: 用来跑训练的

  3. Scaling configuration: 配置

  4. Trainer: 协调以上三个部分

Ray Train+PyTorch

这一块比较建议直接去官网看diff,官网色块标注的比较清晰,非常直观。

复制代码
import os
import tempfile

import torch
from torch.nn import CrossEntropyLoss
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision.models import resnet18
from torchvision.datasets import FashionMNIST
from torchvision.transforms import ToTensor, Normalize, Compose

import ray.train.torch

def train_func(config):
    # Model, Loss, Optimizer
    model = resnet18(num_classes=10)
    model.conv1 = torch.nn.Conv2d(
        1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
    )
    # model.to("cuda")  # This is done by `prepare_model`
    # [1] Prepare model.
    model = ray.train.torch.prepare_model(model)
    criterion = CrossEntropyLoss()
    optimizer = Adam(model.parameters(), lr=0.001)

    # Data
    transform = Compose([ToTensor(), Normalize((0.5,), (0.5,))])
    data_dir = os.path.join(tempfile.gettempdir(), "data")
    train_data = FashionMNIST(root=data_dir, train=True, download=True, transform=transform)
    train_loader = DataLoader(train_data, batch_size=128, shuffle=True)
    # [2] Prepare dataloader.
    train_loader = ray.train.torch.prepare_data_loader(train_loader)

    # Training
    for epoch in range(10):
        for images, labels in train_loader:
            # This is done by `prepare_data_loader`!
            # images, labels = images.to("cuda"), labels.to("cuda")
            outputs = model(images)
            loss = criterion(outputs, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        # [3] Report metrics and checkpoint.
        metrics = {"loss": loss.item(), "epoch": epoch}
        with tempfile.TemporaryDirectory() as temp_checkpoint_dir:
            torch.save(
                model.module.state_dict(),
                os.path.join(temp_checkpoint_dir, "model.pt")
            )
            ray.train.report(
                metrics,
                checkpoint=ray.train.Checkpoint.from_directory(temp_checkpoint_dir),
            )
        if ray.train.get_context().get_world_rank() == 0:
            print(metrics)

# [4] Configure scaling and resource requirements.
scaling_config = ray.train.ScalingConfig(num_workers=2, use_gpu=True)

# [5] Launch distributed training job.
trainer = ray.train.torch.TorchTrainer(
    train_func,
    scaling_config=scaling_config,
    # [5a] If running in a multi-node cluster, this is where you
    # should configure the run's persistent storage that is accessible
    # across all worker nodes.
    # run_config=ray.train.RunConfig(storage_path="s3://..."),
)
result = trainer.fit()

# [6] Load the trained model.
with result.checkpoint.as_directory() as checkpoint_dir:
    model_state_dict = torch.load(os.path.join(checkpoint_dir, "model.pt"))
    model = resnet18(num_classes=10)
    model.conv1 = torch.nn.Conv2d(
        1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
    )
    model.load_state_dict(model_state_dict)

模型

ray.train.torch.prepare_model()

复制代码
model = ray.train.torch.prepare_model(model)
复制代码
相当于model.to(device_id or "cpu") +  DistributedDataParallel(model, device_ids=[device_id])

将model移动到合适的device上,同时实现分布式

数据

ray.train.torch.prepare_data_loader()

报告 checkpoints 和 metrics

复制代码
+import ray.train
+from ray.train import Checkpoint

 def train_func(config):

     ...
     torch.save(model.state_dict(), f"{checkpoint_dir}/model.pth"))
+    metrics = {"loss": loss.item()} # Training/validation metrics.
+    checkpoint = Checkpoint.from_directory(checkpoint_dir) # Build a Ray Train checkpoint from a directory
+    ray.train.report(metrics=metrics, checkpoint=checkpoint)

     ...
复制代码
data_loader = ray.train.torch.prepare_data_loader(data_loader)

将batches移动到合适的device上,同时实现分布式sampler

配置 scale 和 GPUs

复制代码
from ray.train import ScalingConfig
scaling_config = ScalingConfig(num_workers=2, use_gpu=True)

配置持久化存储

多节点分布式训练时必须指定,本地路径会有问题。

复制代码
from ray.train import RunConfig

# Local path (/some/local/path/unique_run_name)
run_config = RunConfig(storage_path="/some/local/path", name="unique_run_name")

# Shared cloud storage URI (s3://bucket/unique_run_name)
run_config = RunConfig(storage_path="s3://bucket", name="unique_run_name")

# Shared NFS path (/mnt/nfs/unique_run_name)
run_config = RunConfig(storage_path="/mnt/nfs", name="unique_run_name")

启动训练任务

复制代码
from ray.train.torch import TorchTrainer

trainer = TorchTrainer(
    train_func, scaling_config=scaling_config, run_config=run_config
)
result = trainer.fit()
相关推荐
向阳花开_miemie17 分钟前
Android音频学习(二十二)——音频接口
学习·音视频
哪吒编程25 分钟前
谁是最强编程大模型?横向对比GPT-5、GPT-5 Codex、Claude Sonnet 4.5、Gemini 2.5 Pro
gpt·chatgpt·claude
胡萝卜3.033 分钟前
深入理解string底层:手写高效字符串类
开发语言·c++·学习·学习笔记·string类·string模拟实现
孟意昶37 分钟前
Doris专题17- 数据导入-文件格式
大数据·数据库·分布式·sql·doris
fanstering40 分钟前
腾讯混元P3-SAM: Native 3D Part Segmentation
笔记·学习·3d·点云
im_AMBER1 小时前
数据结构 05 栈和队列
数据结构·笔记·学习
许泽宇的技术分享1 小时前
百刀打造ChatGPT:nanochat极简LLM全栈实现深度解析
chatgpt·transformer·大语言模型·nanochat
报错小能手2 小时前
linux学习笔记(31)网络编程——TCP time_wait机制
linux·笔记·学习
Yupureki2 小时前
从零开始的C++学习生活 7:vector的入门使用
c语言·c++·学习·visual studio
i学长的猫2 小时前
Ruby小白学习路线
开发语言·学习·ruby