【Flink网络传输】ShuffleMaster与ShuffleEnvironment创建细节与提供的能力

文章目录

  • [一. Taskmanager之间传递数据细节](#一. Taskmanager之间传递数据细节)
  • [二. ShuffleService的设计与实现](#二. ShuffleService的设计与实现)
  • [三. 在JobMaster中创建ShuffleMaster](#三. 在JobMaster中创建ShuffleMaster)
  • [四. 在TaskManager中创建ShuffleEnvironment](#四. 在TaskManager中创建ShuffleEnvironment)
  • [五. 基于ShuffleEnvironment创建ResultPartition](#五. 基于ShuffleEnvironment创建ResultPartition)
    • [1. 在task启动时创建ResultPartition](#1. 在task启动时创建ResultPartition)
    • [2. ResultPartition的创建与对数据的行为](#2. ResultPartition的创建与对数据的行为)
    • [3. 创建ResultSubpartitions与 应用与流或批场景](#3. 创建ResultSubpartitions与 应用与流或批场景)
  • [六. 基于ShuffleEnvironment创建InputGate](#六. 基于ShuffleEnvironment创建InputGate)
    • [1. 在哪里创建的InputGate](#1. 在哪里创建的InputGate)
    • [2. SingleInputGate的创建和提供的能力](#2. SingleInputGate的创建和提供的能力)
      • [2.1. 创建SingleInputGate](#2.1. 创建SingleInputGate)
      • [2.2. InputChannel的创建与处理同一个tm的数据或跨tm的数据的能力](#2.2. InputChannel的创建与处理同一个tm的数据或跨tm的数据的能力)

一. Taskmanager之间传递数据细节

Flink作业最终会被转换为ExecutionGraph并拆解成Task,在TaskManager中调度并执行,Task实例之间会发生跨TaskManager节点的数据交换,尤其是在DataStream API中使用了物理分区操作的情况。

ResultPartition组件存放中间结果等待下游节点消费:

从ExecutionGraph到物理执行图的转换中可以看出,ExecutionVertex最终会被转换为Task实例运行,在ExecutionGraph中上游节点产生的数据被称为IntermediateResult,物理执行图对应ResultPartition组件。在ResultPartition组件中会根据分区的数量再细分为ResultSubPartition。在ResultSubPartition中主要有BufferConsumer队列,用于本地存储Buffer数据,供下游的Task节点消费使用。

InputChannel读取上游数据

对下游的Task实例来讲,主要依赖InputGate组件读取上游数据,在InputGate组件中InputChannel和上游的ResultSubPartition数量相同(发送逻辑是?起到shuffle的作用)。

因此RecordWriter向ResultPartition中的ResultSubPartition写入Buffer数据,就是在向下游的InputChannel写入数据,因为最终会从ResultSubPartition的队列中读取Buffer数据再经过TCP网络连接发送到对应的InputChannel中。

ResultPartition(存储中间结果集)和InputGate(读取中间结果集)组件的创建

TaskManager接收到JobManager的Task创建请求时,会根据TaskDeploymentDescriptor中的参数创建并初始化ResultPartition和InputGate组件。Task启动成功并开始接入数据后,使用ResultPartition和InputGate组件实现上下游算子之间的跨网络数据传输

ShuffleMaster管理ResultPartition和InputGate。

在TaskManager实例中,主要通过ShuffleEnvironment统一创建ResultPartition和InputGate组件。在JobMaster中也会创建ShuffleMaster统一管理和监控作业中所有的ResultPartition和InputGate组件

因此在介绍ResultPartition和InputGate之前,我们先了解一下ShuffleMaster和ShuffleEnvironment的主要作用和创建过程。

二. ShuffleService的设计与实现

如图,创建ShuffleMaster和ShuffleEnvironment组件主要依赖ShuffleServiceFactory实现。同时为了实现可插拔的ShuffleService服务,ShuffleServiceFactory的实现类通过Java SPI的方式加载到ClassLoader中,即通过ShuffleServiceLoader从配置文件中加载系统配置的ShuffleServiceFactory实现类,因此用户也可以自定义实现Shuffle服务。

基于SPI的方式加载ShuffleServiceFactory

在JobManager内部创建JobManagerRunner实例的过程中会创建ShuffeServiceLoader,用于通过Java SPI服务的方式加载配置的ShuffleServiceFactory,同时在TaskManager的TaskManagerServices中创建ShuffeServiceLoader并加载ShuffleServiceFactory。
ShuffleServiceFactory提供了创建ShuffleMaster和ShuffleEnvironment的能力

ShuffleServiceFactory接口定义中包含创建ShuffleMaster和ShuffleEnvironment的方法。Flink提供了基于Netty通信框架实现的NettyShuffleServiceFactory,作为ShuffleServiceFactory接口的默认实现类。

ShuffleEnvironment组件提供了创建Task实例中ResultPartition和InputGate组件的方法,同时Flink中默认提供了NettyShuffleEnvironment实现。

ShuffleMaster组件实现了对ResultPartition和InputGate的注册功能

ShuffleMaster组件实现了对ResultPartition和InputGate的注册功能,同时每个作业都有ShuffleMaster管理当前作业的ResultPartition和InputGate等信息,Flink中提供了NettyShuffleMaster默认实现。

ShuffleService UML关系图

三. 在JobMaster中创建ShuffleMaster

创建ShuffleMaster,ShuffleEnvironment的大致过程

  • 通过ShuffleServiceFactory可以创建ShuffleMaster和ShuffleEnvironment服务,其中ShuffleMaster主要用在JobMaster调度和执行Execution时,维护当前作业中的ResultPartition信息,例如ResourceID、ExecutionAttemptID等
  • 紧接着JobManager会将ShuffleMaster创建的NettyShuffleDescriptor参数信息发送给对应的TaskExecutor实例,在TaskExecutor中就会基于NettyShuffleDescriptor的信息,通过ShuffleEnvironment组件创建ResultPartition、InputGate等组件。

分配slot资源,并将分区信息注册到ShuffleMaster中

如代码清单,在JobMaster开始向Execution分配Slot资源时,会通过分配的Slot计算资源获取TaskManagerLocation信息,然后调用Execution.registerProducedPartitions()方法将分区信息注册到ShuffleMaster中。

java 复制代码
CompletableFuture<Execution> allocateResourcesForExecution(
      SlotProviderStrategy slotProviderStrategy,
      LocationPreferenceConstraint locationPreferenceConstraint,
      @Nonnull Set<AllocationID> allPreviousExecutionGraphAllocationIds) {
   return allocateAndAssignSlotForExecution(
      slotProviderStrategy,
      locationPreferenceConstraint,
      allPreviousExecutionGraphAllocationIds)
      .thenCompose(slot -> registerProducedPartitions(slot.getTaskManagerLocation()));
}

Execution.registerProducedPartitions()方法逻辑如下。

  1. 创建ProducerDescriptor对象,其中包含了分区生产者的基本信息,例如网络连接地址和端口以及TaskManagerLocation信息
  2. 获取当前ExecutionVertex节点对应的IntermediateResultPartition信息,在IntermediateResultPartition结构中包含了ExecutionVertex、IntermediateResultPartitionID以及ExecutionEdge等逻辑分区信息。
  3. 遍历IntermediateResultPartition列表,将IntermediateResultPartition转换为PartitionDescriptor数据结构,然后调用ExecutionGraph的ShuffleMaster服务,将创建的PartitionDescriptor和ProducerDescriptor注册到ShuffleMaster服务中
  4. 根据ShuffleDescriptor创建ResultPartitionDeploymentDescriptor并添加到partitionRegistrations集合中。(producedPartitions信息会被TaskManager的ShuffleEnvironment用于创建ResultPartition和InputGate等组件。
java 复制代码
static CompletableFuture<Map<IntermediateResultPartitionID, ResultPartitionDep
   loymentDescriptor>> registerProducedPartitions(
      ExecutionVertex vertex,
      TaskManagerLocation location,
      ExecutionAttemptID attemptId,
      boolean sendScheduleOrUpdateConsumersMessage) {
     // 创建ProducerDescriptor
   ProducerDescriptor producerDescriptor = 
       ProducerDescriptor.create(location, attemptId);
     // 获取当前节点的partition信息
   Collection<IntermediateResultPartition> partitions = 
       vertex.getProducedPartitions().values();
   Collection<CompletableFuture<ResultPartitionDeploymentDescriptor>> 
      partitionRegistrations =
      new ArrayList<>(partitions.size());
     // 向ShuffleMaster注册partition信息
   for (IntermediateResultPartition partition : partitions) {
      PartitionDescriptor partitionDescriptor = PartitionDescriptor.from(partition);
      int maxParallelism = getPartitionMaxParallelism(partition);
      // 调用ShuffleMaster注册partitionDescriptor和producerDescriptor
      CompletableFuture<? extends ShuffleDescriptor> shuffleDescriptorFuture = vertex
         .getExecutionGraph()
         .getShuffleMaster()
         .registerPartitionWithProducer(partitionDescriptor, producerDescriptor);
      Preconditions.checkState(shuffleDescriptorFuture.isDone(), 
         "ShuffleDescriptor future is incomplete.");
      // 创建ResultPartitionDeploymentDescriptor实例
      CompletableFuture<ResultPartitionDeploymentDescriptor> 
         partitionRegistration = 
          shuffleDescriptorFuture
         .thenApply(shuffleDescriptor -> new ResultPartitionDeploymentDescriptor(
            partitionDescriptor,
            shuffleDescriptor,
            maxParallelism,
            sendScheduleOrUpdateConsumersMessage));
      // 添加到partitionRegistrations集合中
      partitionRegistrations.add(partitionRegistration);
   }
   // 转换存储结构
   return FutureUtils.combineAll(partitionRegistrations).thenApply(rpdds -> {
      Map<IntermediateResultPartitionID, ResultPartitionDeploymentDescriptor> 
         producedPartitions =
         new LinkedHashMap<>(partitions.size());
      rpdds.forEach(rpdd -> producedPartitions.put(rpdd.getPartitionId(), rpdd));
      return producedPartitions;
   });
}

四. 在TaskManager中创建ShuffleEnvironment

从fromConfiguration创建并启动shuffleEnvironment

在TaskManagerServices的启动过程中会创建并启动ShuffleEnvironment。如代码,在TaskManagerServices.fromConfiguration()方法中包含创建和启动ShuffleEnvironment的过程。和ShuffleMaster的创建过程一样,在TaskManagerServices.createShuffleEnvironment()方法中,也会通过Java SPI的方式加载ShuffleServiceFactory实现类,然后创建ShuffleEnvironment。

java 复制代码
public static TaskManagerServices fromConfiguration(...)  
        throws Exception {
        。。。
   // 调用createShuffleEnvironment创建ShuffleEnvironment
final ShuffleEnvironment<?, ?> shuffleEnvironment = createShuffleEnvironment(
   taskManagerServicesConfiguration,
   taskEventDispatcher,
   taskManagerMetricGroup);
// 启动shuffleEnvironment
final int dataPort = shuffleEnvironment.start();
...
}

NettyShuffleEnvironment的创建过程,以及它提供的能力:

在Flink中默认提供基于Netty通信框架实现的NettyShuffleServiceFactory实现类,创建NettyShuffleEnvironment。

ShuffleEnvironment控制了TaskManager中网络数据交换需要的全部服务和组件信息,包括创建上下游数据传输的ResultPartition、SingleInput以及用于网络栈中Buffer数据缓存的NetworkBufferPool等

这里了解NettyShuffleEnvironment的创建过程:

  1. 从NettyShuffleEnvironmentConfiguration参数中获取Netty相关配置,例如TransportType、InetAddress、serverPort以及numberOfSlots等信息。
  2. 创建ResultPartitionManager实例,注册和管理TaskManager中的ResultPartition信息,并提供创建ResultSubpartitionView的方法,专门用于消费ResultSubpartition中的Buffer数据
  3. 创建FileChannelManager实例,指定配置中的临时文件夹,然后创建并获取文件的FileChannel。对于离线类型的作业,会将数据写入文件系统,再对文件进行处理,这里的实现和MapReduce算法类似(ing)。
  4. 创建ConnectionManager实例,主要用于InputChannel组件。
    InputChannel会通过ConnectionManager创建PartitionRequestClient,实现和ResultPartition之间的网络连接。ConnectionManager会根据NettyConfig是否为空,选择创建NettyConnectionManager还是LocalConnectionManager。
  5. 创建NetworkBufferPool组件,用于向ResultPartition和InputGate组件提供Buffer内存存储空间,实际上就是分配和管理MemorySegment内存块
  6. 向系统中注册ShuffleMetrics,用于跟踪Shuffle过程的监控信息
  7. 创建ResultPartitionFactory工厂类,用于创建ResultPartition。
  8. 创建SingleInputGateFactory工厂类,用于创建SingleInputGate。

将以上创建的组件或服务作为参数来创建NettyShuffleEnvironment。

java 复制代码
NettyShuffleServiceFactory.createNettyShuffleEnvironment()
static NettyShuffleEnvironment createNettyShuffleEnvironment(
      NettyShuffleEnvironmentConfiguration config,
      ResourceID taskExecutorResourceId,
      TaskEventPublisher taskEventPublisher,
      MetricGroup metricGroup) {
   // 检查参数都不能为空
。。。
   // 获取Netty相关的配置参数
   NettyConfig nettyConfig = config.nettyConfig();
   // 创建ResultPartitionManager实例
   ResultPartitionManager resultPartitionManager = new ResultPartitionManager();
   // 创建FileChannelManager实例
   FileChannelManager fileChannelManager = 
       new FileChannelManagerImpl(config.getTempDirs(), DIR_NAME_PREFIX);
   // 创建ConnectionManager实例
   ConnectionManager connectionManager = 
       nettyConfig != null ?
       new NettyConnectionManager(resultPartitionManager, 
                                  taskEventPublisher, nettyConfig)
       : new LocalConnectionManager();
   // 创建NetworkBufferPool实例
   NetworkBufferPool networkBufferPool = new NetworkBufferPool(
      config.numNetworkBuffers(),
      config.networkBufferSize(),
      config.networkBuffersPerChannel(),
      config.getRequestSegmentsTimeout());
   // 注册ShuffleMetrics信息
   registerShuffleMetrics(metricGroup, networkBufferPool);
   // 创建ResultPartitionFactory实例
   ResultPartitionFactory resultPartitionFactory = new ResultPartitionFactory(
      resultPartitionManager,
      fileChannelManager,
      networkBufferPool,
      config.getBlockingSubpartitionType(),
      config.networkBuffersPerChannel(),
      config.floatingNetworkBuffersPerGate(),
      config.networkBufferSize(),
      config.isForcePartitionReleaseOnConsumption(),
      config.isBlockingShuffleCompressionEnabled(),
      config.getCompressionCodec());
   // 创建SingleInputGateFactory实例
   SingleInputGateFactory singleInputGateFactory = new SingleInputGateFactory(
      taskExecutorResourceId,
      config,
      connectionManager,
      resultPartitionManager,
      taskEventPublisher,
      networkBufferPool);
   // 最后返回NettyShuffleEnvironment
   return new NettyShuffleEnvironment(
      taskExecutorResourceId,
      config,
      networkBufferPool,
      connectionManager,
      resultPartitionManager,
      fileChannelManager,
      resultPartitionFactory,
      singleInputGateFactory);
}

至此,创建NettyShuffleEnvironment的过程就基本完成了,接下来TaskManager会接受JobMaster提交的Task申请(这是一个被动过程?为了开口子接收其他task的数据?),然后通过ShuffleEnvironment为Task实例创建ResultPartition和InputGate组件。创建这些组件的信息来自ShuffleMaster中注册的ResultPartition和ExecutionEdge等信息。

接下来我们具体了解如何通过ShuffleEnvironment创建ResultPartition和InputGate两个重要组件。

五. 基于ShuffleEnvironment创建ResultPartition

1. 在task启动时创建ResultPartition

task启动时就创建ResultPartition

当TaskManager接收到JobMaster提交的Task作业申请后,就会创建并启动Task线程。

如代码所示,Task的构造器方法包含了NettyShuffleEnvironment创建ResultPartitionWriter的实现,可以理解为在创建Task线程的时候就通过ShuffleEnvironment创建了ResultPartition

反压控制:动态控制数据向下游输出

创建好ResultPartitionWriter后,对ResultPartitionWriter进行装饰,目的是让ResultPartition可以向下游节点发送ResultPartition是否可消费的信息,以便实现动态控制ResultPartitionWriter内的数据输出

java 复制代码
org.apache.flink.runtime.taskmanager.Task
public Task(...){
final ShuffleIOOwnerContext taskShuffleContext = shuffleEnvironment
    .createShuffleIOOwnerContext(taskNameWithSubtaskAndId, executionId, 
                                 metrics.getIOMetricGroup());
// 创建ResultPartitonWriter
final ResultPartitionWriter[] resultPartitionWriters = 
   shuffleEnvironment.createResultPartitionWriters(
   taskShuffleContext,
   resultPartitionDeploymentDescriptors).toArray(new ResultPartitionWriter[] {});
// 对ResultPartiton进行装饰
this.consumableNotifyingPartitionWriters = 
   ConsumableNotifyingResultPartitionWriterDecorator.decorate(
   resultPartitionDeploymentDescriptors,
   resultPartitionWriters,
   this,
   jobId,
   resultPartitionConsumableNotifier);

}

2. ResultPartition的创建与对数据的行为

如代码,接着看创建ResultPartition的主要逻辑。

  1. 根据resultPartitionDeploymentDescriptors的大小初始化ResultPartition数组。
  2. 通过resultPartitionFactory创建ResultPartition。
  3. 调用registerOutputMetrics()方法注册resultPartitions相关的监控指标信息。
  4. 返回创建的ResultPartition数组。
java 复制代码
NettyShuffleEnvironment.createResultPartitionWriters()
public Collection<ResultPartition> createResultPartitionWriters(
      ShuffleIOOwnerContext ownerContext,
      Collection<ResultPartitionDeploymentDescriptor> resultPartitionDeployment
         Descriptors) {
   synchronized (lock) {
      Preconditions
          .checkState(!isClosed, 
                      "The NettyShuffleEnvironment has already been shut down.");
      // 根据resultPartitionDeploymentDescriptors创建ResultPartition数组
      ResultPartition[] resultPartitions = 
          new ResultPartition[resultPartitionDeploymentDescriptors.size()];
      int counter = 0;
      // 遍历ResultPartitionDeploymentDescriptor创建ResultPartition
      for (ResultPartitionDeploymentDescriptor rpdd : 
           resultPartitionDeploymentDescriptors) {
         resultPartitions[counter++] = 
             resultPartitionFactory.create(ownerContext.getOwnerName(), rpdd);
      }
      registerOutputMetrics(config.isNetworkDetailedMetrics(), 
                            ownerContext.getOutputGroup(), resultPartitions);
      return  Arrays.asList(resultPartitions);
   }
}

继续了解ResultPartition的创建过程

  1. 判断ResultPartitionType是否为Blocking类型,如果是则需要创建BufferCompressor,用于压缩Buffer数据,即在离线数据处理过程中通过BufferCompressor压缩Buffer数据。
  2. 根据numberOfSubpartitions对应的数量创建ResultSubpartition数组,并存储当前ResultPartition中的ResultSubpartition。
  3. 根据ResultPartitionType参数创建ResultPartition,如果ResultPartitionType是Blocking类型,则创建ReleaseOnConsumptionResultPartition,即数据消费完便立即释放ResultPartition。否则创建ResultSubpartition,即不会随着数据消费完之后进行释放,适用于流数据处理场景
  4. 调用createSubpartitions()方法创建ResultSubpartition。ResultSubpartition会有ID进行区分,并和InputGate中的InputChannel一一对应
java 复制代码
//ResultPartitionFactory.create()
public ResultPartition create(
      String taskNameWithSubtaskAndId,
      ResultPartitionID id,
      ResultPartitionType type,
      int numberOfSubpartitions,
      int maxParallelism,
      FunctionWithException<BufferPoolOwner, BufferPool, IOException> 
         bufferPoolFactory)
{
   BufferCompressor bufferCompressor = null;
   // 如果ResultPartitionType是Blocking类型,则需要创建BufferCompressor,用于数据压缩
   if (type.isBlocking() && blockingShuffleCompressionEnabled) {
      bufferCompressor = new BufferCompressor(networkBufferSize, compressionCodec);
   }
   // 创建ResultSubpartition数组
   ResultSubpartition[] subpartitions = new ResultSubpartition
      [numberOfSubpartitions];
   // 根据条件创建ResultPartition
   ResultPartition partition = forcePartitionReleaseOnConsumption || !type.isBlocking()
      ? new ReleaseOnConsumptionResultPartition(
         taskNameWithSubtaskAndId,
         id,
         type,
         subpartitions,
         maxParallelism,
         partitionManager,
         bufferCompressor,
         bufferPoolFactory)
      : new ResultPartition(
         taskNameWithSubtaskAndId,
         id,
         type,
         subpartitions,
         maxParallelism,
         partitionManager,
         bufferCompressor,
         bufferPoolFactory);
   // 创建Subpartitions
   createSubpartitions(partition, type, blockingSubpartitionType, subpartitions);
   LOG.debug("{}: Initialized {}", taskNameWithSubtaskAndId, this);
   return partition;
}

3. 创建ResultSubpartitions与 应用与流或批场景

  • 在创建ResultSubpartitions的时候,也会根据ResultPartitionType是否为Blocking类型,选择创建BoundedBlockingPartitions(用于有界批计算处理场景)或PipelinedSubpartition(用于无界流式数据集处理场景)。
  • 在PipelinedSubpartition中会以subpartitions的数组索引作为ResultPartition中的index,也就是说,ResultPartition主要通过index确认数据写入哪个ResultSubPartition。
java 复制代码
private void createSubpartitions(
      ResultPartition partition,
      ResultPartitionType type,
      BoundedBlockingSubpartitionType blockingSubpartitionType,
      ResultSubpartition[] subpartitions) {
   // 创建ResultSubpartitions.
   if (type.isBlocking()) {
      initializeBoundedBlockingPartitions(
         subpartitions,
         partition,
         blockingSubpartitionType,
         networkBufferSize,
         channelManager);
   } else {
      for (int i = 0; i < subpartitions.length; i++) {
         subpartitions[i] = new PipelinedSubpartition(i, partition);
      }
   }
}

六. 基于ShuffleEnvironment创建InputGate

1. 在哪里创建的InputGate

和ResultPartition创建过程相似,Task的初始化过程中也会创建InputGate。如代码,Task构造器方法中涵盖了InputGate的创建逻辑。

java 复制代码
final InputGate[] gates = shuffleEnvironment.createInputGates(
   taskShuffleContext,
   this,
   inputGateDeploymentDescriptors).toArray(new InputGate[] {});
this.inputGates = new InputGate[gates.length];
int counter = 0;
for (InputGate gate : gates) {
   inputGates[counter++] = new InputGateWithMetrics(gate, metrics.
      getIOMetricGroup().getNumBytesInCounter());
}

接下来具体看NettyShuffleEnvironment.createInputGates()的逻辑

  1. 获取networkInputGroup信息,用于创建InputChannelMetrics。
  2. 根据inputGateDeploymentDescriptorsShufflemanager传递的,那这个数量是怎么确定的?ing)数组的大小创建SingleInputGate数组,用于存储SingleInputGate组件。
  3. 根据InputGateDeploymentDescriptor创建SingleInputGate
  4. 注册InputGate的监控信息,并返回SingleInputGate集合。
java 复制代码
public Collection<SingleInputGate> createInputGates(
      ShuffleIOOwnerContext ownerContext,
      PartitionProducerStateProvider partitionProducerStateProvider,
      Collection<InputGateDeploymentDescriptor> inputGateDeploymentDescriptors) {
   synchronized (lock) {
      Preconditions.checkState(!isClosed, "The NettyShuffleEnvironment has 
         already been shut down.");
      MetricGroup networkInputGroup = ownerContext.getInputGroup();
      @SuppressWarnings("deprecation")
      InputChannelMetrics inputChannelMetrics = 
          new InputChannelMetrics(networkInputGroup, ownerContext.
             getParentGroup());
      SingleInputGate[] inputGates = 
          new SingleInputGate[inputGateDeploymentDescriptors.size()];
      int counter = 0;
      //遍历igdd通过singleInputGateFactory创建inputGate
      for (InputGateDeploymentDescriptor igdd : inputGateDeploymentDescriptors) {
         SingleInputGate inputGate = singleInputGateFactory.create(
            ownerContext.getOwnerName(),
            igdd,
            partitionProducerStateProvider,
            inputChannelMetrics);
         InputGateID id = new InputGateID(igdd.getConsumedResultId(), 
                                          ownerContext.
                                              getExecutionAttemptID());
         inputGatesById.put(id, inputGate);
         inputGate.getCloseFuture().thenRun(() -> inputGatesById.remove(id));
         inputGates[counter++] = inputGate;
      }
      //注册metric
      registerInputMetrics(config.isNetworkDetailedMetrics(), networkInputGroup,
                           inputGates);
      return Arrays.asList(inputGates);
   }
}

2. SingleInputGate的创建和提供的能力

2.1. 创建SingleInputGate

继续看SingleInputGateFactory创建SingleInputGate的过程,如代码

  1. 创建createBufferPoolFactory,用于创建LocalBufferPool。通过LocalBufferPool可以为InputGate提供Buffer数据的存储空间,实现本地缓冲接入InputGate中的二进制数据。
  2. 根据结果分区类型和是否支持压缩决定是否创建BufferDecompressor,这里和ResultPartition中的BufferCompressor是对应的,即通过BufferDecompressor解压经过BufferCompressor压缩后的Buffer数据。
  3. 通过InputGateDeploymentDescriptor中的参数BufferCompressor和BufferPoolFactory创建SingleInputGate对象。
  4. 调用createInputChannels()方法创建SingleInputGate中的InputChannels。
  5. 将创建完成的inputGate返回给Task实例。
java 复制代码
public SingleInputGate create(
      @Nonnull String owningTaskName,
      @Nonnull InputGateDeploymentDescriptor igdd,
      @Nonnull PartitionProducerStateProvider partitionProducerStateProvider,
      @Nonnull InputChannelMetrics metrics) {
   SupplierWithException<BufferPool, IOException> bufferPoolFactory = 
       createBufferPoolFactory(
      networkBufferPool,
      networkBuffersPerChannel,
      floatingNetworkBuffersPerGate,
      igdd.getShuffleDescriptors().length,
      igdd.getConsumedPartitionType());
   BufferDecompressor bufferDecompressor = null;
   if (igdd.getConsumedPartitionType().isBlocking() 
       && blockingShuffleCompressionEnabled) {
      bufferDecompressor = new BufferDecompressor(networkBufferSize, 
         compressionCodec);
   }
   SingleInputGate inputGate = new SingleInputGate(
      owningTaskName,
      igdd.getConsumedResultId(),
      igdd.getConsumedPartitionType(),
      igdd.getConsumedSubpartitionIndex(),
      igdd.getShuffleDescriptors().length,
      partitionProducerStateProvider,
      bufferPoolFactory,
      bufferDecompressor);
      //创建SingleInputGate中的InputChannels。
   createInputChannels(owningTaskName, igdd, inputGate, metrics);
   return inputGate;
}

SingleInputGateFactory.createInputChannels()方法定义了创建指定SingleInputGate对应的InputChannel集合。

  1. 获取ShuffleDescriptor列表,ShuffleDescriptor是在ShuffleMaster中创建和生成的,描述了数据生产者和ResultPartition等信息。
  2. 创建InputChannel数组,最后将其存储到inputGate中。可以看出每个resultPartitionID对应一个InputChannel。
java 复制代码
private void createInputChannels(
      String owningTaskName,
      InputGateDeploymentDescriptor inputGateDeploymentDescriptor,
      SingleInputGate inputGate,
      InputChannelMetrics metrics) {
   ShuffleDescriptor[] shuffleDescriptors = 
      inputGateDeploymentDescriptor.getShuffleDescriptors();
   // 创建InputChannel
   InputChannel[] inputChannels = new InputChannel[shuffleDescriptors.length];
   ChannelStatistics channelStatistics = new ChannelStatistics();
   for (int i = 0; i < inputChannels.length; i++) {
      inputChannels[i] = createInputChannel(
         inputGate,
         i,
         shuffleDescriptors[i],
         channelStatistics,
         metrics);
      ResultPartitionID resultPartitionID = inputChannels[i].getPartitionId();
      inputGate.setInputChannel(resultPartitionID.getPartitionId(), inputChannels[i]);
   }
   LOG.debug("{}: Created {} input channels ({}).",
      owningTaskName,
      inputChannels.length,
      channelStatistics);
}

2.2. InputChannel的创建与处理同一个tm的数据或跨tm的数据的能力

概述

在SingleInputGateFactory.createInputChannel()方法中定义了创建InputChannel的具体逻辑,

同时会根据ShuffleDescriptor实现类是否为NettyShuffleDescriptor决定创建UnknownInputChannel还是系统内置的LocalInputChannel和RemoteInputChannel。

重点了解LocalInputChannel和RemoteInputChannel的创建过程。

创建内置InputChannel的主要逻辑:

[!NOTE]

判断消费数据的Task实例和数据生产的Task实例是否运行在同一个TaskManager中。这一步主要是在判断producerLocation和consumerLocation是否相等,

  • 如果相等则说明上下游Task属于同一TaskManager,创建的InputChannel就为LocalInputChannel,下游InputChannel不经过网络获取数据
  • 不相等,则说明上下游Task不在同一个TaskManager中,此时创建基于Netty框架实现的RemoteInputChannel,帮助下游Task实例从网络中消费上游Task中的Buffer数据。
    在RemoteInputChannel中需要networkBufferPool、connectionManager等组件,对于LocalInputChannel则不需要这些组件。在ShuffleMaster注册分区信息的时候(when:在申请好tm资源后?),创建上下游Task的连接信息,此时会根据Task分配的Slot信息,传入ProducerLocation和ConsumerLocation等配置信息,然后创建不同的InputChannel,从而实现上下游Task的网络连接。
java 复制代码
private InputChannel createKnownInputChannel(
      SingleInputGate inputGate,
      int index,
      NettyShuffleDescriptor inputChannelDescriptor,
      ChannelStatistics channelStatistics,
      InputChannelMetrics metrics) {
   ResultPartitionID partitionId = inputChannelDescriptor.getResultPartitionID();
   if (inputChannelDescriptor.isLocalTo(taskExecutorResourceId)) {
      // Task实例属于同一个TaskManager
      channelStatistics.numLocalChannels++;
      return new LocalInputChannel(
         inputGate,
         index,
         partitionId,
         partitionManager,
         taskEventPublisher,
         partitionRequestInitialBackoff,
         partitionRequestMaxBackoff,
         metrics);
   } else {
      // Task实例属于不同的TaskManager
      channelStatistics.numRemoteChannels++;
      return new RemoteInputChannel(
         inputGate,
         index,
         partitionId,
         inputChannelDescriptor.getConnectionId(),
         connectionManager,
         partitionRequestInitialBackoff,
         partitionRequestMaxBackoff,
         metrics,
         networkBufferPool);
   }
}

到这里,ResultPartition和InputGate组件就全部创建完毕了。Task实例会将ResultPartition和InputGate组件封装在环境信息中,然后传递给StreamTask。StreamTask获取ResultPartition和InputGate,用于创建StreamNetWorkTaskInput和RecordWriter组件,从而完成Task中数据的输入和输出。

相关推荐
fantasy_arch5 小时前
CPU性能优化-磁盘空间和解析时间
网络·性能优化
lucky_syq6 小时前
Saprk和Flink的区别
大数据·flink
lucky_syq6 小时前
流式处理,为什么Flink比Spark Streaming好?
大数据·flink·spark
是Dream呀7 小时前
Python从0到100(七十八):神经网络--从0开始搭建全连接网络和CNN网络
网络·python·神经网络
kaixin_learn_qt_ing8 小时前
了解RPC
网络·网络协议·rpc
安全小王子8 小时前
Kali操作系统简单介绍
网络·web安全
Hacker_LaoYi10 小时前
【漏洞分析】DDOS攻防分析(四)——TCP篇
网络·tcp/ip·ddos
爱吃水果蝙蝠汤10 小时前
DATACOM-IP单播路由(BGP)-复习-实验
网络·网络协议·tcp/ip
Sun_12_210 小时前
SQL注入(SQL lnjection Base)21
网络·数据库
小屁孩大帅-杨一凡11 小时前
Flink 简介和简单的demo
大数据·flink