GPT实战系列-通过Basetool构建自定义LangChain工具方法

GPT实战系列-通过Basetool构建自定义Langchain工具方法

LLM大模型:

GPT实战系列-探究GPT等大模型的文本生成

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-大话LLM大模型训练

随着OpenAI的GPT-4这样的大型语言模型(LLMs)已经风靡全球,现在让它们自动执行各种任务,如回答问题、翻译语言、分析文本等。LLMs是在交互上真正体验到像"人工智能"。

如何管理这些模块呢?

LangChain在这方面发挥重要作用。LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。

python 复制代码
from typing import Optional, Type

from langchain.callbacks.manager import (
    AsyncCallbackManagerForToolRun,
    CallbackManagerForToolRun,
)

用BaseTool构建自定义的tools

LangChain可以连接到自己定义的工具,也可以连接到内嵌的tool提供商。这里介绍通过BaseTool的构造方法。

定义引用需要用的模块:

python 复制代码
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import BaseTool, StructuredTool, tool

当自带的工具并不能解决我们面临的问题,就需要自己构造自己的tools,怎么构造呢?

除了tool装饰器,还有是BaseTool的方法,定义工具的参数说明。

定义一个简单返回字符串的搜索工具,为了简单起见,并没有实现真正搜索。

python 复制代码
# 定义参数说明
class SearchInput(BaseModel):
    query: str = Field(description="should be a search query")

自定义工具类,实现功能:

python 复制代码
class CustomSearchTool(BaseTool):
    name = "custom_search"
    description = "useful for when you need to answer questions about current events"
    args_schema: Type[BaseModel] = SearchInput

    def _run(
        self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None
    ) -> str:
        """Use the tool."""
        return "LangChain"

    async def _arun(
        self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None
    ) -> str:
        """Use the tool asynchronously."""
        raise NotImplementedError("custom_search does not support async")

实例化,并打印,得到类似这样的输出:

python 复制代码
search = CustomSearchTool()
print(search.name)
print(search.description)
print(search.args)

得到类似的输出:

复制代码
custom_search
useful for when you need to answer questions about current events
{'query': {'title': 'Query', 'description': 'should be a search query', 'type': 'string'}}

LangChain是一个Python框架,可以使用LLMs构建应用程序。它与各种模块连接,使与LLM和提示管理,一切变得简单。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

相关推荐
虫无涯12 小时前
LangSmith:大模型应用开发的得力助手
人工智能·langchain·llm
玲小珑19 小时前
LangChain.js 完全开发手册(九)LangGraph 状态图与工作流编排
前端·langchain·ai编程
RainbowSea1 天前
12. LangChain4j + 向量数据库操作详细说明
java·langchain·ai编程
RainbowSea1 天前
11. LangChain4j + Tools(Function Calling)的使用详细说明
java·langchain·ai编程
叫我詹躲躲2 天前
n8n 自动化工作流平台完整部署
前端·langchain·领域驱动设计
量子位2 天前
GPT-5编程专用版发布!独立连续编程7小时,简单任务提速10倍,VS Code就能用
gpt·chatgpt
刘立军3 天前
本地大模型编程实战(33)用SSE实现大模型的流式输出
架构·langchain·全栈
Code_流苏4 天前
AI热点周报(9.7~9.13):阿里Qwen3-Next震撼发布、Claude 增强记忆与服务抖动、OpenAI 聚焦模型规范化...
人工智能·gpt·ai·openai·claude·qwen3-next·架构创新
ChinaRainbowSea4 天前
9. LangChain4j + 整合 Spring Boot
java·人工智能·spring boot·后端·spring·langchain·ai编程
玲小珑4 天前
LangChain.js 完全开发手册(八)Agent 智能代理系统开发
前端·langchain·ai编程