吴恩达机器学习笔记 十七 通过偏差与方差诊断性能 正则化 偏差 方差

高偏差(欠拟合):在训练集上表现得也不好

高方差(过拟合):J_cv要远大于J_train

刚刚好:J_cv和J_train都小

J_cv和J_train 拟合多项式阶数的关系

从一阶到四阶,训练集的误差越来越小,而验证集的误差先变小后变大

也有可能同时出现高方差和高偏差

正则化

当 λ 非常大时, w 会非常小, 每个 w 都接近0,模型会是常数 b ,即一条水平线。这种情况下会出现高偏差(欠拟合),并且J_train会很大。

当 λ 为0时,没有正则化,只是拟合一个多项式,会出现过拟合/高方差。此时 J_train 很小但 J_cv 会非常大

J_train 和 J_cv 与 λ 的关系

相关推荐
大山同学2 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫19822 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
陈天伟教授4 小时前
人工智能应用-机器听觉:15. 声纹识别的应用
人工智能·神经网络·机器学习·语音识别
板面华仔4 小时前
机器学习入门(三)——决策树(Decision Tree)
人工智能·决策树·机器学习
源于花海4 小时前
迁移学习的前沿知识(AI与人类经验结合、传递式、终身、在线、强化、可解释性等)
人工智能·机器学习·迁移学习·迁移学习前沿
机 _ 长4 小时前
YOLO26 改进 | 基于特征蒸馏 | 知识蒸馏 (Response & Feature-based Distillation)
python·深度学习·机器学习
龙山云仓5 小时前
No140:AI世间故事-对话康德——先验哲学与AI理性:范畴、道德律与自主性
大数据·人工智能·深度学习·机器学习·全文检索·lucene
jay神7 小时前
基于YOLOv8的木材表面缺陷检测系统
人工智能·深度学习·yolo·计算机视觉·毕业设计
songyuc7 小时前
【Llava】load_pretrained_model() 说明
人工智能·深度学习