【个人开发】llama2部署实践(二)——基于GPU部署踩坑

折腾了一整天,踩了GPU加速的一堆坑,记录一下。

1.GPU加速方式

上篇已经写了llama2部署的大概流程:【【个人开发】llama2部署实践(一)】------基于CPU部署

针对llama.cpp文件内容,仅需再make的时候带上参数编译,既可实现GPU加速。

shell 复制代码
make LLAMA_CUBLAS=1

备注:可用的版本组合:

cc (GCC) 9.3.1 20200408 (Red Hat 9.3.1-2)

g++ (GCC) 9.3.1 20200408 (Red Hat 9.3.1-2)

Build cuda_11.8.r11.8/compiler.31833905_0

2.踩坑分享

a.编译报错

more than one instance of overloaded function "log2" matches the argument list:

复现不出来了,大意:function.h文件中,math函数中log参数传递有误。

思考一下,应该就是c文件的问题,文件路径在cuda中,评估应该是cuda版本的问题。选择卸载原来cuda12.04的版本,下载11.8版本。

b.卸载CUDA:

一通无脑卸载

shell 复制代码
yum remove nvidia-*
rpm -qa|grep -i nvid|sort
yum  remove kmod-nvidia-*

rm -rf /usr/local/cuda-12.0
rm -rf /usr/local/cuda

c.下载CUDA11.8

其他三种下载方式都试了,最后用run这种方式搞出来的。

shell 复制代码
# 访问https://developer.nvidia.com/cuda-downloads
# 使用run文件方式
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run
# 参考链接:https://zhuanlan.zhihu.com/p/589442446

run在执行的时候可能会出现报错:

The NVIDIA proprietary driver is already installed in this system. It was installed through a 3d party repository

意思是驱动已经装上去了,不需要再装。所以选择页面取消Driver的勾选,即可。
注:如果服务器使用nvidia-smi能显示显卡出信息,则说明已经安全驱动,我这里将Toolkit理解为一个客户端工具

d.重新编译llama.cpp

如何重新编译后带上ngl参数去跑main程序,留意一下有没有下面的warning。

warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored

warning: see main README.md for information on enabling GPU BLAS support

如果有那说明仍然没有使用GPU,建议重新拉llama.cpp代码进行编译。

shell 复制代码
make LLAMA_CUBLAS=1

e.重新启动

shell 复制代码
./main -m /data/opt/llama2_model/llama-2-7b-bin/ggml-model-f16.bin -n 256 --repeat_penalty 1.1 --color -i -f prompts/alpaca.txt -ins -c 2048 --temp 0.2 -ngl 15

f.查看进程

使用下面命令能监听到进程,如果processes存在进程,即可!

shell 复制代码
watch -n 0.5 nvidia-smi

以上,End!

相关推荐
码界奇点4 小时前
基于Wails框架的Ollama模型桌面管理系统设计与实现
go·毕业设计·llama·源代码管理
嫂子开门我是_我哥6 小时前
推荐的加速器
个人开发
晚霞的不甘8 小时前
Flutter for OpenHarmony字典查询 App 全栈解析:从搜索交互到详情展示的完整实
flutter·架构·前端框架·全文检索·交互·个人开发
独隅9 小时前
Ollama for macOS 完全指南:零配置本地运行 Llama、DeepSeek 等大模型,私享安全高效的 AI 能力
安全·macos·llama
skywalk816320 小时前
使用llama.cpp和ollama推理LFM2.5-1.2B模型
llama·ollama·lfm2.5-1.2b
GatiArt雷1 天前
基于LLaMA 3微调的行业知识库问答系统搭建与实践
llama
lixzest1 天前
提升编程能力
c++·python·个人开发
lixzest1 天前
基于CPU开发或GPU开发的区别
gpu算力
wangqiaowq1 天前
llama.cpp + llama-server 的安装部署验证
运维·服务器·llama
upp1 天前
pyqt5 5.15.9和llama-cpp-python 0.3.16 初始化大模型报错解决
python·qt·llama