【点云】激光点云建图评测

处理工具

  1. Pcap合并软件
bash 复制代码
sudo apt install wireshark-common
  • 合并Pcap文件,路径为数据文件夹下,
bash 复制代码
#mergecap -w <输出的新Pcap> <输入的Pcap>
mergecap -w lidar_output.pcap slice2099-06-01/LIDAR/lidar.pcap slice2099-06-02/LIDAR/lidar.pcap
  1. 可视化软件
    Meshlab、禾赛Pandar View

点云3D重建的评测

1. 平面特征厚度

从点云LAS文件提取地面厚度指标:输入采样点坐标文件,输出各个采样点为中心 X m 2 Xm^2 Xm2最大厚度、90%最大厚度、厚度标准差与RMS等,类似标志牌的点云厚度评测。

2. 控制点精度

  1. 控制点绝对精度评测

3. 世界坐标点云重投影图像帧匹配精度

基本过程描述:某一时刻图像,查询INS位姿,利用Tci计算相机位姿,

点云从世界坐标转换到相机坐标,利用齐次坐标表达,
T c i ∗ T i w ∗ P w T_{ci}*T_{iw}*P_w Tci∗Tiw∗Pw

相机重投影
p = K [ R ∣ t ] X p=K[R|t]X p=K[R∣t]X

问题:重投影点云与图像特征距离偏大。

分析:LiDAR与INS的外参或INS与相机的外参误差过大。

验证方法:LiDAR与INS采用连续时间系统标定,与依靠INS定位的标定参数比对;标定Camera-LiDAR外参作真值,检验外参标定结果。

解决:相机与INS的外参Tci中的Z轴加0.3度,平移量z轴减去0.1m,使得某设备某次的建图重投影OK;建议LiDAR与INS的标定方法与相机和INS的标定在原理保持一致。

相关推荐
MIXLLRED1 天前
自动驾驶技术全景解析:从感知、决策到控制的演进与挑战
人工智能·机器学习·自动驾驶
应用市场1 天前
基于多摄像头融合的智能小车自动驾驶系统完整实现
人工智能·机器学习·自动驾驶
NewCarRen1 天前
整合STPA、ISO 26262与SOTIF的自动驾驶安全需求推导与验证
人工智能·安全·自动驾驶·预期功能安全
地平线开发者1 天前
mul 与 reduce_sum 的优化实例
算法·自动驾驶
NewCarRen3 天前
未来智能网联汽车的网络安全档案建立方法
网络·自动驾驶·预期功能安全
Coovally AI模型快速验证3 天前
OmniNWM:突破自动驾驶世界模型三大瓶颈,全景多模态仿真新标杆(附代码地址)
人工智能·深度学习·机器学习·计算机视觉·自动驾驶·transformer
学slam的小范4 天前
ROS跑ORB-SLAM3遇见的问题总结
人工智能·机器人·自动驾驶
周杰伦_Jay4 天前
【自动驾驶开源仿真平台】Carla、AirSim、Udacity self-driving-car-sim、Apollo、Autoware。
人工智能·机器学习·自动驾驶
Godspeed Zhao5 天前
自动驾驶中的传感器技术70——Navigation(7)
人工智能·机器学习·自动驾驶
康谋自动驾驶6 天前
如何闭环自动驾驶仿真场景,实现从“重建”到“可用”?
自动驾驶·仿真·建模·3dgs