【点云】激光点云建图评测

处理工具

  1. Pcap合并软件
bash 复制代码
sudo apt install wireshark-common
  • 合并Pcap文件,路径为数据文件夹下,
bash 复制代码
#mergecap -w <输出的新Pcap> <输入的Pcap>
mergecap -w lidar_output.pcap slice2099-06-01/LIDAR/lidar.pcap slice2099-06-02/LIDAR/lidar.pcap
  1. 可视化软件
    Meshlab、禾赛Pandar View

点云3D重建的评测

1. 平面特征厚度

从点云LAS文件提取地面厚度指标:输入采样点坐标文件,输出各个采样点为中心 X m 2 Xm^2 Xm2最大厚度、90%最大厚度、厚度标准差与RMS等,类似标志牌的点云厚度评测。

2. 控制点精度

  1. 控制点绝对精度评测

3. 世界坐标点云重投影图像帧匹配精度

基本过程描述:某一时刻图像,查询INS位姿,利用Tci计算相机位姿,

点云从世界坐标转换到相机坐标,利用齐次坐标表达,
T c i ∗ T i w ∗ P w T_{ci}*T_{iw}*P_w Tci∗Tiw∗Pw

相机重投影
p = K [ R ∣ t ] X p=K[R|t]X p=K[R∣t]X

问题:重投影点云与图像特征距离偏大。

分析:LiDAR与INS的外参或INS与相机的外参误差过大。

验证方法:LiDAR与INS采用连续时间系统标定,与依靠INS定位的标定参数比对;标定Camera-LiDAR外参作真值,检验外参标定结果。

解决:相机与INS的外参Tci中的Z轴加0.3度,平移量z轴减去0.1m,使得某设备某次的建图重投影OK;建议LiDAR与INS的标定方法与相机和INS的标定在原理保持一致。

相关推荐
m0_6501082418 小时前
Lift, Splat, Shoot:自动驾驶多视图相机的 BEV 语义表示学习
论文阅读·自动驾驶·数据驱动·lss·纯视觉bev感知·bev 语义分割·可解释的端到端轨迹规划
m0_650108241 天前
Sparse4D v3:端到端 3D 检测与跟踪的技术突破
论文阅读·自动驾驶·sparse4d v3·端到端3d感知框架·去噪思想·端到端跟踪·纯视觉感知
m0_650108242 天前
VADv2:基于概率规划的端到端矢量化自动驾驶
论文阅读·自动驾驶·端到端矢量化·驾驶场景中的不确定性·概率场建模·多模态编码·vadv2
m0_650108242 天前
DiffVLA:视觉语言引导的扩散规划在自动驾驶中的创新与实践
自动驾驶·扩散模型·多模态融合·端到端规划·混合稀疏-稠密感知模块·vlm命令引导·截断扩散
Wai-Ngai2 天前
自动驾驶控制算法——模型预测控制(MPC)
人工智能·机器学习·自动驾驶
QianCenRealSim2 天前
FSD入华“加速”中国自动驾驶产业的推动与重构
人工智能·重构·自动驾驶
AI Planner&Control2 天前
自动驾驶控制算法——车辆七自由度动力学模型
自动驾驶
韩曙亮2 天前
【自动驾驶】Autoware 三大版本 ( Autoware.AI | Autoware.Auto | Autoware Core/Universe )
人工智能·机器学习·自动驾驶·autoware·autoware.ai·autoware.auto
Bol52612 天前
「“嵌”入未来,“式”界无限」从智能家居到工业4.0,从可穿戴设备到自动驾驶,嵌入式技术正以前所未有的深度和广度,悄然重塑我们的世界
人工智能·自动驾驶·智能家居
veritascxy2 天前
PyTorch-CUDA镜像支持自动驾驶感知模块训练
pytorch·自动驾驶·cuda