【点云】激光点云建图评测

处理工具

  1. Pcap合并软件
bash 复制代码
sudo apt install wireshark-common
  • 合并Pcap文件,路径为数据文件夹下,
bash 复制代码
#mergecap -w <输出的新Pcap> <输入的Pcap>
mergecap -w lidar_output.pcap slice2099-06-01/LIDAR/lidar.pcap slice2099-06-02/LIDAR/lidar.pcap
  1. 可视化软件
    Meshlab、禾赛Pandar View

点云3D重建的评测

1. 平面特征厚度

从点云LAS文件提取地面厚度指标:输入采样点坐标文件,输出各个采样点为中心 X m 2 Xm^2 Xm2最大厚度、90%最大厚度、厚度标准差与RMS等,类似标志牌的点云厚度评测。

2. 控制点精度

  1. 控制点绝对精度评测

3. 世界坐标点云重投影图像帧匹配精度

基本过程描述:某一时刻图像,查询INS位姿,利用Tci计算相机位姿,

点云从世界坐标转换到相机坐标,利用齐次坐标表达,
T c i ∗ T i w ∗ P w T_{ci}*T_{iw}*P_w Tci∗Tiw∗Pw

相机重投影
p = K [ R ∣ t ] X p=K[R|t]X p=K[R∣t]X

问题:重投影点云与图像特征距离偏大。

分析:LiDAR与INS的外参或INS与相机的外参误差过大。

验证方法:LiDAR与INS采用连续时间系统标定,与依靠INS定位的标定参数比对;标定Camera-LiDAR外参作真值,检验外参标定结果。

解决:相机与INS的外参Tci中的Z轴加0.3度,平移量z轴减去0.1m,使得某设备某次的建图重投影OK;建议LiDAR与INS的标定方法与相机和INS的标定在原理保持一致。

相关推荐
春日见19 分钟前
commit与fetch
linux·人工智能·算法·机器学习·自动驾驶
Hcoco_me18 小时前
深度学习目标关联:常见深度学习匹配方法全面详解
人工智能·深度学习·分类·数据挖掘·自动驾驶
智能汽车人20 小时前
自动驾驶---无地图导航
人工智能·机器学习·自动驾驶
无忧智库20 小时前
智能驾驶的“数字引擎“:解密某汽车集团“十五五“车路云一体化数据空间与自动驾驶训练平台(WORD)
人工智能·机器学习·自动驾驶
Hcoco_me1 天前
目标追踪概述、分类
人工智能·深度学习·算法·机器学习·分类·数据挖掘·自动驾驶
王锋(oxwangfeng)1 天前
基于多模型融合的交通灯状态感知系统
人工智能·自动驾驶
.小墨迹1 天前
局部规划中的TEB,DWA,EGOplanner等算法在自动驾驶中应用?
开发语言·c++·人工智能·学习·算法·机器学习·自动驾驶
不做无法实现的梦~1 天前
ros2实现路径规划---nav2部分
linux·stm32·嵌入式硬件·机器人·自动驾驶
Hi202402172 天前
Apollo2NuScenes数据转换工具概要设计
自动驾驶·apollo
Ai173163915792 天前
2026年了,你认为AI会取代人类吗?欢迎留言讨论
大数据·图像处理·人工智能·深度学习·计算机视觉·自动驾驶·语音识别