【点云】激光点云建图评测

处理工具

  1. Pcap合并软件
bash 复制代码
sudo apt install wireshark-common
  • 合并Pcap文件,路径为数据文件夹下,
bash 复制代码
#mergecap -w <输出的新Pcap> <输入的Pcap>
mergecap -w lidar_output.pcap slice2099-06-01/LIDAR/lidar.pcap slice2099-06-02/LIDAR/lidar.pcap
  1. 可视化软件
    Meshlab、禾赛Pandar View

点云3D重建的评测

1. 平面特征厚度

从点云LAS文件提取地面厚度指标:输入采样点坐标文件,输出各个采样点为中心 X m 2 Xm^2 Xm2最大厚度、90%最大厚度、厚度标准差与RMS等,类似标志牌的点云厚度评测。

2. 控制点精度

  1. 控制点绝对精度评测

3. 世界坐标点云重投影图像帧匹配精度

基本过程描述:某一时刻图像,查询INS位姿,利用Tci计算相机位姿,

点云从世界坐标转换到相机坐标,利用齐次坐标表达,
T c i ∗ T i w ∗ P w T_{ci}*T_{iw}*P_w Tci∗Tiw∗Pw

相机重投影
p = K [ R ∣ t ] X p=K[R|t]X p=K[R∣t]X

问题:重投影点云与图像特征距离偏大。

分析:LiDAR与INS的外参或INS与相机的外参误差过大。

验证方法:LiDAR与INS采用连续时间系统标定,与依靠INS定位的标定参数比对;标定Camera-LiDAR外参作真值,检验外参标定结果。

解决:相机与INS的外参Tci中的Z轴加0.3度,平移量z轴减去0.1m,使得某设备某次的建图重投影OK;建议LiDAR与INS的标定方法与相机和INS的标定在原理保持一致。

相关推荐
m0_6501082412 小时前
WorldSplat:面向自动驾驶的 4D 场景生成与新颖视图合成框架
论文阅读·自动驾驶·高保真·时空一致性·4d驾驶场景合成·生成式与重建式融合·4d高斯
yuanmenghao14 小时前
自动驾驶中间件iceoryx - 内存与 Chunk 管理(三)
数据结构·c++·算法·链表·中间件·自动驾驶
yuanmenghao16 小时前
现代汽车中的通信方式 ——以智能驾驶系统为例
人工智能·自动驾驶·汽车·信息与通信
数据分享者16 小时前
175万部影视车辆全景数据集-品牌车型年份类型标注-IMDB链接-全球电影汽车文化研究与AI识别训练权威资源-适用于影视AI车辆识别广告投放自动驾驶算法开发
人工智能·自动驾驶·汽车
melonbo17 小时前
自动驾驶场景下的图像预处理
人工智能·机器学习·自动驾驶
木头程序员17 小时前
图像模型对抗鲁棒性:从实验室攻击到现实世界安全防线
深度学习·安全·自动驾驶
地平线开发者1 天前
linux 常见稳定性问题分析方法
算法·自动驾驶