【点云】激光点云建图评测

处理工具

  1. Pcap合并软件
bash 复制代码
sudo apt install wireshark-common
  • 合并Pcap文件,路径为数据文件夹下,
bash 复制代码
#mergecap -w <输出的新Pcap> <输入的Pcap>
mergecap -w lidar_output.pcap slice2099-06-01/LIDAR/lidar.pcap slice2099-06-02/LIDAR/lidar.pcap
  1. 可视化软件
    Meshlab、禾赛Pandar View

点云3D重建的评测

1. 平面特征厚度

从点云LAS文件提取地面厚度指标:输入采样点坐标文件,输出各个采样点为中心 X m 2 Xm^2 Xm2最大厚度、90%最大厚度、厚度标准差与RMS等,类似标志牌的点云厚度评测。

2. 控制点精度

  1. 控制点绝对精度评测

3. 世界坐标点云重投影图像帧匹配精度

基本过程描述:某一时刻图像,查询INS位姿,利用Tci计算相机位姿,

点云从世界坐标转换到相机坐标,利用齐次坐标表达,
T c i ∗ T i w ∗ P w T_{ci}*T_{iw}*P_w Tci∗Tiw∗Pw

相机重投影
p = K [ R ∣ t ] X p=K[R|t]X p=K[R∣t]X

问题:重投影点云与图像特征距离偏大。

分析:LiDAR与INS的外参或INS与相机的外参误差过大。

验证方法:LiDAR与INS采用连续时间系统标定,与依靠INS定位的标定参数比对;标定Camera-LiDAR外参作真值,检验外参标定结果。

解决:相机与INS的外参Tci中的Z轴加0.3度,平移量z轴减去0.1m,使得某设备某次的建图重投影OK;建议LiDAR与INS的标定方法与相机和INS的标定在原理保持一致。

相关推荐
地平线开发者1 天前
ReID/OSNet 算法模型量化转换实践
算法·自动驾驶
地平线开发者1 天前
开发者说|EmbodiedGen:为具身智能打造可交互3D世界生成引擎
算法·自动驾驶
Coovally AI模型快速验证2 天前
YOLO、DarkNet和深度学习如何让自动驾驶看得清?
深度学习·算法·yolo·cnn·自动驾驶·transformer·无人机
Swaggy T2 天前
自动驾驶轨迹规划算法——Apollo EM Planner
人工智能·算法·自动驾驶
Monkey PilotX2 天前
机器人“ChatGPT 时刻”倒计时
人工智能·机器学习·计算机视觉·自动驾驶
luoganttcc2 天前
L4 级别自动驾驶 硬件架构设计
人工智能·自动驾驶·硬件架构
星创易联3 天前
车载网关助力无人配送车联网解决方案
车载系统·自动驾驶·车载以太网
地平线开发者4 天前
征程 6 | 自定义查表算子实现量化部署
算法·自动驾驶
NewCarRen5 天前
自动驾驶中安全相关机器学习功能的可靠性定义方法
安全·机器学习·自动驾驶