大语言模型:Query Rewriting for Retrieval-Augmented Large Language Models

总体思路

  • 作者首先指出大语言模型虽然取得了很好的效果,但是仍然存在幻觉和时间顺序混乱的问题,因此需要额外知识库和LLM内部知识库相结合,来修正;
  • 因此优化传统的retriever-reader的方案成为需要;
  • 目前的研究方案当中使用prompt优化的方法是黑盒的不可修改;
  • 因此作者提出了采用大模型重写query的rewrite的方法来优化;
  • 同时作者也提出这种重写的方法可以不是局限于大语言模型的,直接使用可训练的语言模型也能完成相关任务;
  • 在实验当中这种方法对下游任务reader的效果取得了良好的效果。(也就是没有直接评测,而是评测了下游任务)
    直接看这个图大致就可以获得作者提出的方案和原始方案的区别了。

训练细节

  • 作者基础版本的使用LLM的rewriter当中也是使用meta-prompt进行query改写;
  • 作者在训练版本使用了T5作为被训练模型,在开始真正训练之前,因为T5模型本身不能完成这个query获取的任务,因此先使用pseudo数据进行训练,使得其具有这个能力,这些数据就是上一步LLM实现query改写获得的数据;
  • 在训练的过程中主要有几个组成:状态(序列×字母可能性)、动作、概率(实际上的改写策略,默认是上一步预热得到的模型)、reward(使用结果得出的结论)、γ(最终得到的reader输出结果,有无限多种)的强化学习方法
相关推荐
测试人社区-小明3 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
罗西的思考4 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
人邮异步社区4 小时前
PRML为何是机器学习的经典书籍中的经典?
人工智能·机器学习
xiangzhihong85 小时前
使用 Trae IDE 一键将 Figma 转为前端代码
机器学习
深度学习实战训练营5 小时前
U-Net++:嵌套密集跳跃连接,多尺度融合增强特征表达,医学影像分割的unet创新-k学长深度学习专栏
人工智能·深度学习
哥布林学者5 小时前
吴恩达深度学习课程四:计算机视觉 第二周:经典网络结构 (一)经典卷积网络
深度学习·ai
Coding茶水间5 小时前
基于深度学习的反光衣检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
露临霜6 小时前
重启机器学习
人工智能·机器学习
IT·小灰灰6 小时前
告别“翻墙“烦恼:DMXAPI让Gemini-3-pro-thinking调用快如闪电
网络·人工智能·python·深度学习·云计算
CappuccinoRose6 小时前
均值向量的检验
机器学习·均值向量·均值向量的检验·多元均值向量的检验