大语言模型:Query Rewriting for Retrieval-Augmented Large Language Models

总体思路

  • 作者首先指出大语言模型虽然取得了很好的效果,但是仍然存在幻觉和时间顺序混乱的问题,因此需要额外知识库和LLM内部知识库相结合,来修正;
  • 因此优化传统的retriever-reader的方案成为需要;
  • 目前的研究方案当中使用prompt优化的方法是黑盒的不可修改;
  • 因此作者提出了采用大模型重写query的rewrite的方法来优化;
  • 同时作者也提出这种重写的方法可以不是局限于大语言模型的,直接使用可训练的语言模型也能完成相关任务;
  • 在实验当中这种方法对下游任务reader的效果取得了良好的效果。(也就是没有直接评测,而是评测了下游任务)
    直接看这个图大致就可以获得作者提出的方案和原始方案的区别了。

训练细节

  • 作者基础版本的使用LLM的rewriter当中也是使用meta-prompt进行query改写;
  • 作者在训练版本使用了T5作为被训练模型,在开始真正训练之前,因为T5模型本身不能完成这个query获取的任务,因此先使用pseudo数据进行训练,使得其具有这个能力,这些数据就是上一步LLM实现query改写获得的数据;
  • 在训练的过程中主要有几个组成:状态(序列×字母可能性)、动作、概率(实际上的改写策略,默认是上一步预热得到的模型)、reward(使用结果得出的结论)、γ(最终得到的reader输出结果,有无限多种)的强化学习方法
相关推荐
胡耀超1 小时前
大模型架构演进全景:从Transformer到下一代智能系统的技术路径(MoE、Mamba/SSM、混合架构)
人工智能·深度学习·ai·架构·大模型·transformer·技术趋势分析
小杨勇敢飞2 小时前
UNBIASED WATERMARK:大语言模型的无偏差水印
人工智能·语言模型·自然语言处理
m0_603888712 小时前
Delta Activations A Representation for Finetuned Large Language Models
人工智能·ai·语言模型·自然语言处理·论文速览
SEO_juper8 小时前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
Gyoku Mint9 小时前
提示词工程(Prompt Engineering)的崛起——为什么“会写Prompt”成了新技能?
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·nlp
m0_617663629 小时前
Deeplizard深度学习课程(七)—— 神经网络实验
人工智能·深度学习·神经网络
l12345sy10 小时前
Day21_【机器学习—决策树(3)—剪枝】
决策树·机器学习·剪枝
笔触狂放10 小时前
【机器学习】综合实训(一)
人工智能·机器学习
ningmengjing_10 小时前
激活函数:神经网络的“灵魂开关”
人工智能·深度学习·神经网络
Billy_Zuo10 小时前
人工智能机器学习——逻辑回归
人工智能·机器学习·逻辑回归