大语言模型:Query Rewriting for Retrieval-Augmented Large Language Models

总体思路

  • 作者首先指出大语言模型虽然取得了很好的效果,但是仍然存在幻觉和时间顺序混乱的问题,因此需要额外知识库和LLM内部知识库相结合,来修正;
  • 因此优化传统的retriever-reader的方案成为需要;
  • 目前的研究方案当中使用prompt优化的方法是黑盒的不可修改;
  • 因此作者提出了采用大模型重写query的rewrite的方法来优化;
  • 同时作者也提出这种重写的方法可以不是局限于大语言模型的,直接使用可训练的语言模型也能完成相关任务;
  • 在实验当中这种方法对下游任务reader的效果取得了良好的效果。(也就是没有直接评测,而是评测了下游任务)
    直接看这个图大致就可以获得作者提出的方案和原始方案的区别了。

训练细节

  • 作者基础版本的使用LLM的rewriter当中也是使用meta-prompt进行query改写;
  • 作者在训练版本使用了T5作为被训练模型,在开始真正训练之前,因为T5模型本身不能完成这个query获取的任务,因此先使用pseudo数据进行训练,使得其具有这个能力,这些数据就是上一步LLM实现query改写获得的数据;
  • 在训练的过程中主要有几个组成:状态(序列×字母可能性)、动作、概率(实际上的改写策略,默认是上一步预热得到的模型)、reward(使用结果得出的结论)、γ(最终得到的reader输出结果,有无限多种)的强化学习方法
相关推荐
技术路上的探险家6 小时前
8 卡 V100 服务器:基于 vLLM 的 Qwen 大模型高效部署实战
运维·服务器·语言模型
yLDeveloper8 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_8 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
2401_836235868 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs8 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习
九河云9 小时前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
2的n次方_9 小时前
CANN ascend-transformer-boost 架构解析:融合注意力算子管线、长序列分块策略与图引擎协同机制
深度学习·架构·transformer
人工智能培训10 小时前
具身智能视觉、触觉、力觉、听觉等信息如何实时对齐与融合?
人工智能·深度学习·大模型·transformer·企业数字化转型·具身智能
pp起床11 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
阿杰学AI12 小时前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer