STM32利用AES加密数据、解密数据

STM32利用AES加密数据、解密数据


MD5在线工具

https://www.md5ma.com/md5-generator

Chapter1 STM32利用AES加密数据、解密数据

原文链接

一、头文件

c 复制代码
#ifndef _AES_H
#define _AES_H


// 以bit为单位的密钥长度,只能为 128,192 和 256 三种
#define AES_KEY_LENGTH	128

// 加解密模式
#define AES_MODE_ECB	0				// 电子密码本模式(一般模式)
#define AES_MODE_CBC	1				// 密码分组链接模式
#define AES_MODE		AES_MODE_CBC


///
//	函数名:	aes_init
//	描述:		初始化,在此执行扩展密钥操作。
//	输入参数:	pKey -- 原始密钥,其长度必须为 AES_KEY_LENGTH/8 字节。
//	输出参数:	无。
//	返回值:	无。
///
void aes_init(const void *pKey);

//
//	函数名:	aes_encrypt
//	描述:		加密数据
//	输入参数:	pPlainText	-- 明文,即需加密的数据,其长度为nDataLen字节。
//				nDataLen	-- 数据长度,以字节为单位,必须为AES_KEY_LENGTH/8的整倍数。
//				pIV			-- 初始化向量,如果使用ECB模式,可设为NULL。
//	输出参数:	pCipherText	-- 密文,即由明文加密后的数据,可以与pPlainText相同。
//	返回值:	无。
//
void aes_encrypt(const unsigned char *pPlainText, unsigned char *pCipherText, 
				 unsigned int nDataLen, const unsigned char *pIV);

//
//	函数名:	aes_decrypt
//	描述:		解密数据
//	输入参数:	pCipherText -- 密文,即需解密的数据,其长度为nDataLen字节。
//				nDataLen	-- 数据长度,以字节为单位,必须为AES_KEY_LENGTH/8的整倍数。
//				pIV			-- 初始化向量,如果使用ECB模式,可设为NULL。
//	输出参数:	pPlainText  -- 明文,即由密文解密后的数据,可以与pCipherText相同。
//	返回值:	无。
//
void aes_decrypt( const unsigned char *pCipherText,unsigned char *pPlainText, 
				 unsigned int nDataLen, const unsigned char *pIV);
#endif  /* _AES_H */

二、源文件

c 复制代码
#include "aes.h"
#include "string.h"

    
// 为了能针对C51进行优化,并且又使代码可用于ARM和PC等环境,
// 在非C51环境(没有定义__C51__)下需要把C51特定的关键字定义为空
#ifndef __C51__
	#define code
	#define data
	#define idata
	#define xdata
	#define pdata
	typedef unsigned char BOOL;
#else
	typedef bit BOOL;
#endif

#define Nk	(AES_KEY_LENGTH / 32)		// 以"字"(4字节)为单位的密钥长度
#define Nb	4							// 以"字"(4字节)为单位的加解密数据块大小,固定为4

// Nr:加密的轮数
#if   AES_KEY_LENGTH == 128
	#define Nr	10
#elif AES_KEY_LENGTH == 192
	#define Nr	12
#elif AES_KEY_LENGTH == 256
	#define Nr	14
#else
	#error AES_KEY_LENGTH must be 128, 192 or 256 BOOLs!
#endif

// GF(28) 多项式
#define BPOLY 0x1B // Lower 8 BOOLs of (x^8 + x^4 + x^3 + x + 1), ie. (x^4 + x^3 + x + 1).

/*****************************************************************************
*  Typedef  Enum                        枚举定义
*****************************************************************************/

/*****************************************************************************
*  Struct                               数据结构定义
******************************************************************************/


/*****************************************************************************
*  Local variable                       局部变量
*****************************************************************************/

// AES子密钥表,当密钥长度为128位时,占用176字节空间
static xdata unsigned char g_roundKeyTable[4*Nb*(Nr+1)];

// 加密用的SBox
static code const unsigned char sBox[256] = 
{
	0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
	0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
	0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
	0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
	0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
	0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
	0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
	0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
	0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
	0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
	0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
	0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
	0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
	0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
	0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
	0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 
};

// 解密用的SBox
static code const unsigned char invSBox[256] = 
{
	0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
	0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
	0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
	0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
	0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
	0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
	0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
	0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
	0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
	0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
	0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
	0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
	0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
	0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
	0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
	0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d	
};


///
//	函数名:	rotation_word
//	描述:		对一个"字"数据进行循环右移。
//	输入参数:	pWord -- 要右移的4字节数据。
//	输出参数:	pWord -- 右移后的4字节数据。
//	返回值:	无。
///
static void rotation_word(unsigned char *pWord)
{
	unsigned char temp = pWord[0];
	pWord[0]  = pWord[1];
	pWord[1]  = pWord[2];
	pWord[2]  = pWord[3];
	pWord[3]  = temp;
}

///
//	函数名:	xor_bytes
//	描述:		批量异或两组数据。
//	输入参数:	pData1 -- 要异或的第一组数据。
//				pData1 -- 要异或的第二组数据。
//				nCount -- 要异或的数据长度。
//	输出参数:	pData1 -- 异或后的结果。
//	返回值:	无。
///
static void xor_bytes(unsigned char *pData1, const unsigned char *pData2, unsigned char nCount)
{
	unsigned char i;
	
	for (i = 0; i < nCount; i++)
	{
		pData1[i] ^= pData2[i];
	}
}

///
//	函数名:	AddRoundKey
//	描述:		把 中间状态数据 加上(异或)子密钥,数据长度为16字节。
//	输入参数:	pState	  -- 状态数据。
//				pRoundKey -- 子密钥数据。
//	输出参数:	pState	  -- 加上子密钥后的状态数据。
//	返回值:	无。
///
// static void AddRoundKey(unsigned char *pState, const unsigned char *pRoundKey)
// {
// 	xor_bytes(pState, pRoundKey, 4*Nb);
// }

// AddRoundKey的宏形式,比函数形式可以节省4字节的data数据
#define AddRoundKey(pState, pRoundKey) \
	xor_bytes((pState), (pRoundKey), 4*Nb)


///
//	函数名:	sub_bytes
//	描述:		通过S盒子置换状态数据。
//	输入参数:	pState	-- 状态数据。
//				nCount  -- 状态数据长度。
//				bInvert	-- 是否使用反向S盒子(解密时使用)。
//	输出参数:	pState	-- 置换后的状态数据。
//	返回值:	无。
///
static void sub_bytes(unsigned char *pState, unsigned char nCount, BOOL bInvert)
{
	unsigned char i;
	const unsigned char code *pSBox = bInvert ? invSBox : sBox;
	
	for (i = 0; i < nCount; i++)
	{
		pState[i] = pSBox[pState[i]];
	}
}

///
//	函数名:	shift_rows
//	描述:		把状态数据移行。
//	输入参数:	pState	-- 状态数据。
//				bInvert	-- 是否反向移行(解密时使用)。
//	输出参数:	pState	-- 移行后的状态数据。
//	返回值:	无。
///
static void shift_rows(unsigned char *pState, BOOL bInvert)
{
	// 注意:状态数据以列形式存放!

	unsigned char r;	// row,   行
	unsigned char c;	// column,列
	unsigned char temp;
	unsigned char rowData[4];
	
	for (r = 1; r < 4; r++)
	{
		// 备份一行数据
		for (c = 0; c < 4; c++)
		{
			rowData[c] = pState[r + 4*c];
		}
		
		temp = bInvert ? (4 - r) : r;
		for (c = 0; c < 4; c++)
		{
			pState[r + 4*c] = rowData[(c + temp) % 4];
		}
	}
}

///
//	函数名:	gf_mult_by02
//	描述:		在GF(28)域的 乘2 运算。
//	输入参数:	num	-- 乘数。
//	输出参数:	无。
//	返回值:	num乘以2的结果。
///
static unsigned char gf_mult_by02(unsigned char num)
{
	if ((num & 0x80) == 0)
	{
		num = num << 1;
	}
	else
	{
		num = (num << 1) ^ BPOLY;
	}
	
	return num;
}

///
//	函数名:	mix_columns
//	描述:		混合状态各列数据。
//	输入参数:	pState	-- 状态数据。
//				bInvert	-- 是否反向混合(解密时使用)。
//	输出参数:	pState	-- 混合列后的状态数据。
//	返回值:	无。
///
static void mix_columns(unsigned char *pState, BOOL bInvert)
{
	unsigned char i;
	unsigned char temp;
	unsigned char a0Pa2_M4;	// 4(a0 + a2)
	unsigned char a1Pa3_M4;	// 4(a1 + a3)
	unsigned char result[4];

	for (i = 0; i < 4; i++, pState += 4)
	{
		// b0 = 2a0 + 3a1 + a2 + a3 
		//    = (a0 + a1 + a2 + a3) + 2(a0 + a1) + a0

		temp = pState[0] ^ pState[1] ^ pState[2] ^ pState[3];
		result[0] = temp ^ pState[0] ^ gf_mult_by02((unsigned char) (pState[0] ^ pState[1]));
		result[1] = temp ^ pState[1] ^ gf_mult_by02((unsigned char) (pState[1] ^ pState[2]));
		result[2] = temp ^ pState[2] ^ gf_mult_by02((unsigned char) (pState[2] ^ pState[3]));
		result[3] = temp ^ pState[3] ^ gf_mult_by02((unsigned char) (pState[3] ^ pState[0]));

		if (bInvert)
		{
		// b0' = 14a0 + 11a1 + 13a2 + 9a3 
		//     = (a0 + a1 + a2 + a3) + 2(a0 + a1) + a0	(这部分为b0)
		//       + 2(4(a0 + a2) + 4(a1 + a3))
		//       +   4(a0 + a2)

			a0Pa2_M4 = gf_mult_by02(gf_mult_by02((unsigned char) (pState[0] ^ pState[2])));
			a1Pa3_M4 = gf_mult_by02(gf_mult_by02((unsigned char) (pState[1] ^ pState[3])));
			temp	 = gf_mult_by02((unsigned char) (a0Pa2_M4 ^ a1Pa3_M4));
			result[0] ^= temp ^ a0Pa2_M4;
			result[1] ^= temp ^ a1Pa3_M4;
			result[2] ^= temp ^ a0Pa2_M4;
			result[3] ^= temp ^ a1Pa3_M4;
		}

		memcpy(pState, result, 4);
	}
}

///
//	函数名:	block_encrypt
//	描述:		对单块数据加密。
//	输入参数:	pState -- 状态数据。
//	输出参数:	pState -- 加密后的状态数据。
//	返回值:	无。
///
static void block_encrypt(unsigned char *pState)
{
	unsigned char i;
	
	AddRoundKey(pState, g_roundKeyTable);
	
	for (i = 1; i <= Nr; i++)	// i = [1, Nr]
	{
		sub_bytes(pState, 4*Nb, 0);
		shift_rows(pState, 0);

		if (i != Nr)
		{
			mix_columns(pState, 0);
		}

		AddRoundKey(pState, &g_roundKeyTable[4*Nb*i]);
	}
	
// 为了节省代码,合并到循化执行
// 	sub_bytes(pState, 4*Nb);
//	shift_rows(pState, 0);
// 	AddRoundKey(pState, &g_roundKeyTable[4*Nb*Nr]);
}

///
//	函数名:	block_decrypt
//	描述:		对单块数据解密。
//	输入参数:	pState -- 状态数据。
//	输出参数:	pState -- 解密后的状态数据。
//	返回值:	无。
///
static void block_decrypt(unsigned char *pState)
{
	unsigned char i;
	
	AddRoundKey(pState, &g_roundKeyTable[4*Nb*Nr]);
	
	for (i = Nr; i > 0; i--)	// i = [Nr, 1]
	{
		shift_rows(pState, 1);
		sub_bytes(pState, 4*Nb, 1);
		AddRoundKey(pState, &g_roundKeyTable[4*Nb*(i-1)]);

		if (i != 1)
		{
			mix_columns(pState, 1);
		}
	}
	
// 为了节省代码,合并到循化执行
//  shift_rows(pState, 1);
//  sub_bytes(pState, 4*Nb, 1);
//  AddRoundKey(pState, g_roundKeyTable);
}

/*****************************************************************************
*  Global Functions                     全局函数
******************************************************************************/


///
//	函数名:	aes_init
//	描述:		初始化,在此执行扩展密钥操作。
//	输入参数:	pKey -- 原始密钥,其长度必须为 AES_KEY_LENGTH/8 字节。
//	输出参数:	无。
//	返回值:	无。
///
void aes_init(const void *pKey)
{
	// 扩展密钥
	unsigned char i;
	unsigned char *pRoundKey;
	unsigned char Rcon[4] = {0x01, 0x00, 0x00, 0x00};

	memcpy(g_roundKeyTable, pKey, 4*Nk);

	pRoundKey = &g_roundKeyTable[4*Nk];

	for (i = Nk; i < Nb*(Nr+1); pRoundKey += 4, i++)
	{
		memcpy(pRoundKey, pRoundKey - 4, 4);

		if (i % Nk == 0)
		{
			rotation_word(pRoundKey);
			sub_bytes(pRoundKey, 4, 0);
			xor_bytes(pRoundKey, Rcon, 4);

			Rcon[0] = gf_mult_by02(Rcon[0]);
		}
		else if (Nk > 6 && i % Nk == Nb)
		{
			sub_bytes(pRoundKey, 4, 0);
		}

		xor_bytes(pRoundKey, pRoundKey - 4*Nk, 4);
	}
}

//
//	函数名:	aes_encrypt
//	描述:		加密数据
//	输入参数:	pPlainText	-- 明文,即需加密的数据,其长度为nDataLen字节。
//				nDataLen	-- 数据长度,以字节为单位,必须为AES_KEY_LENGTH/8的整倍数。
//				pIV			-- 初始化向量,如果使用ECB模式,可设为NULL。
//	输出参数:	pCipherText	-- 密文,即由明文加密后的数据,可以与pPlainText相同。
//	返回值:	无。
//
void aes_encrypt(const unsigned char *pPlainText, unsigned char *pCipherText, 
				 unsigned int nDataLen, const unsigned char *pIV)
{
	unsigned int i;

	if (pPlainText != pCipherText)
	{
		memcpy(pCipherText, pPlainText, nDataLen);
	}

	for (i = nDataLen/(4*Nb); i > 0 ; i--, pCipherText += 4*Nb)
	{
		#if AES_MODE == AES_MODE_CBC
			xor_bytes(pCipherText, pIV, 4*Nb);
		#endif

		block_encrypt(pCipherText);
		pIV = pCipherText;
	}
}

//
//	函数名:	aes_decrypt
//	描述:		解密数据
//	输入参数:	pCipherText -- 密文,即需解密的数据,其长度为nDataLen字节。
//				nDataLen	-- 数据长度,以字节为单位,必须为AES_KEY_LENGTH/8的整倍数。
//				pIV			-- 初始化向量,如果使用ECB模式,可设为NULL。
//	输出参数:	pPlainText  -- 明文,即由密文解密后的数据,可以与pCipherText相同。
//	返回值:	无。
//
void aes_decrypt( const unsigned char *pCipherText,unsigned char *pPlainText, 
				 unsigned int nDataLen, const unsigned char *pIV)
{
	unsigned int i;

	if (pPlainText != pCipherText)
	{
		memcpy(pPlainText, pCipherText, nDataLen);
	}

	// 从最后一块数据开始解密,这样不用开辟空间来保存IV
	pPlainText += nDataLen - 4*Nb;
	for (i = nDataLen/(4*Nb); i > 0 ; i--, pPlainText -= 4*Nb)
	{
		block_decrypt(pPlainText);

		#if AES_MODE == AES_MODE_CBC
			if (i == 1)
			{// 最后一块数据
				xor_bytes(pPlainText, pIV, 4*Nb);
			}
			else
			{
				xor_bytes(pPlainText, pPlainText - 4*Nb, 4*Nb);
			}
		#endif
	}
}

三、使用

使用注意点:

1、AES_KEY_LENGTH取值只能是128,192 和 256

2、密钥和向量表长度为AES_KEY_LENGTH/8个字节

3、加密、解密数据长度为AES_KEY_LENGTH/8的整数倍字节

c 复制代码
int main(void)
{ 
	u8 buf[16],saveBuf[16],descryptBuf[16];
	u16 i;
	unsigned char AES128key[16] = "123456789abcdefa";//秘钥
	unsigned char AES_IV[16]= "0102030405123456";//向量表
	delay_init(168);		  //初始化延时函数
	LED_Init();		        //初始化LED端口

	aes_init(AES128key);//AES初始化
	
	for(i=0;i<sizeof(buf);i++)
	{
		buf[i]=i;
	}
	while(1)
	{
		aes_encrypt(buf,saveBuf,sizeof(buf), AES_IV);
		
		
		aes_decrypt(saveBuf,descryptBuf, sizeof(buf), AES_IV);
		
		
		GPIO_ResetBits(GPIOF,GPIO_Pin_9);  //LED0对应引脚GPIOF.9拉低,亮  等同LED0=0;
		GPIO_SetBits(GPIOF,GPIO_Pin_10);   //LED1对应引脚GPIOF.10拉高,灭 等同LED1=1;
		delay_ms(500);  		   //延时300ms
		GPIO_SetBits(GPIOF,GPIO_Pin_9);	   //LED0对应引脚GPIOF.0拉高,灭  等同LED0=1;
		GPIO_ResetBits(GPIOF,GPIO_Pin_10); //LED1对应引脚GPIOF.10拉低,亮 等同LED1=0;
		delay_ms(500);                     //延时300ms
	}
}

Chapter2 stm32 的 md5计算函数

原文链接:https://blog.csdn.net/joyopirate/article/details/122006598

假如你用的是stm32cubeide,可以考虑使用官方的库。使用方法可以看我写的这个【加密库使用方法】

参考:

https://www.cnblogs.com/xuning/p/4686021.html

根据上面那个网站提供方法稍加改造得到的

c 复制代码
#define ROTATELEFT(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))

/**
 * @desc: convert message and mes_bkp string into integer array and store them in w
 */
static void md5_process_part1(uint32_t *w, unsigned char *message, uint32_t *pos, uint32_t mes_len, const unsigned char *mes_bkp)
{
    uint32_t i; // used in for loop

    for(i = 0; i <= 15; i++)
    {
        int32_t count = 0;
        while(*pos < mes_len && count <= 24)
        {
            w[i] += (((uint32_t)message[*pos]) << count);
            (*pos)++;
            count += 8;
        }
        while(count <= 24)
        {
            w[i] += (((uint32_t)mes_bkp[*pos - mes_len]) << count);
            (*pos)++;
            count += 8;
        }
    }
}

/**
 * @desc: start encryption based on w
 */
static void md5_process_part2(uint32_t abcd[4], uint32_t *w, const uint32_t k[64], const uint32_t s[64])
{
    uint32_t i; // used in for loop

    uint32_t a = abcd[0];
    uint32_t b = abcd[1];
    uint32_t c = abcd[2];
    uint32_t d = abcd[3];
    uint32_t f = 0;
    uint32_t g = 0;

    for(i = 0; i < 64; i++)
    {
        if(i >= 0 && i <= 15)
        {
            f = (b & c) | ((~b) & d);
            g = i;
        }else if(i >= 16 && i <= 31)
        {
            f = (d & b) | ((~d) & c);
            g = (5 * i + 1) % 16;
        }else if(i >= 32 && i <= 47)
        {
            f = b ^ c ^ d;
            g = (3 * i + 5) % 16;
        }else if(i >= 48 && i <= 63)
        {
            f = c ^ (b | (~d));
            g = (7 * i) % 16;
        }
        uint32_t temp = d;
        d = c;
        c = b;
        b = ROTATELEFT((a + f + k[i] + w[g]), s[i]) + b;
        a = temp;
    }

    abcd[0] += a;
    abcd[1] += b;
    abcd[2] += c;
    abcd[3] += d;
}

static const uint32_t k_table[]={
    0xd76aa478,0xe8c7b756,0x242070db,0xc1bdceee,
    0xf57c0faf,0x4787c62a,0xa8304613,0xfd469501,0x698098d8,
    0x8b44f7af,0xffff5bb1,0x895cd7be,0x6b901122,0xfd987193,
    0xa679438e,0x49b40821,0xf61e2562,0xc040b340,0x265e5a51,
    0xe9b6c7aa,0xd62f105d,0x02441453,0xd8a1e681,0xe7d3fbc8,
    0x21e1cde6,0xc33707d6,0xf4d50d87,0x455a14ed,0xa9e3e905,
    0xfcefa3f8,0x676f02d9,0x8d2a4c8a,0xfffa3942,0x8771f681,
    0x6d9d6122,0xfde5380c,0xa4beea44,0x4bdecfa9,0xf6bb4b60,
    0xbebfbc70,0x289b7ec6,0xeaa127fa,0xd4ef3085,0x04881d05,
    0xd9d4d039,0xe6db99e5,0x1fa27cf8,0xc4ac5665,0xf4292244,
    0x432aff97,0xab9423a7,0xfc93a039,0x655b59c3,0x8f0ccc92,
    0xffeff47d,0x85845dd1,0x6fa87e4f,0xfe2ce6e0,0xa3014314,
    0x4e0811a1,0xf7537e82,0xbd3af235,0x2ad7d2bb,0xeb86d391
};

static const uint32_t s_table[]={
    7,12,17,22,7,12,17,22,7,12,17,22,7,
    12,17,22,5,9,14,20,5,9,14,20,5,9,14,20,5,9,14,20,
    4,11,16,23,4,11,16,23,4,11,16,23,4,11,16,23,6,10,
    15,21,6,10,15,21,6,10,15,21,6,10,15,21
};

int32_t cal_md5(unsigned char *result, unsigned char *data, int length){
    if (result == NULL)
    {
        return 1;
    }

    uint32_t w[16];

    uint32_t i; // used in for loop

    uint32_t mes_len = length;
    uint32_t looptimes = (mes_len + 8) / 64 + 1;
    uint32_t abcd[] = {0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476};

    uint32_t pos = 0; // position pointer for message
    uint32_t bkp_len = 64 * looptimes - mes_len; // 经过计算发现不超过72

//    unsigned char *bkp_mes = (unsigned char *)calloc(1, bkp_len);
    unsigned char bkp_mes[80];
    for(int i = 0; i < 80; i++) //初始化
    {
        bkp_mes[i] = 0;
    }

    bkp_mes[0] = (unsigned char)(0x80);
    uint64_t mes_bit_len = ((uint64_t)mes_len) * 8;
    for(i = 0; i < 8; i++)
    {
        bkp_mes[bkp_len-i-1] = (unsigned char)((mes_bit_len & (0x00000000000000FF << (8 * (7 - i)))) >> (8 * (7 - i)));
    }

    for(i = 0; i < looptimes; i++)
    {
        for(int j = 0; j < 16; j++) //初始化
        {
            w[j] = 0x00000000;
        }

        md5_process_part1(w, data, &pos, mes_len, bkp_mes); // compute w

        md5_process_part2(abcd, w, k_table, s_table); // calculate md5 and store the result in abcd
    }

    for(int i = 0; i < 16; i++)
    {
        result[i] = ((unsigned char*)abcd)[i];
    }

    return 0;
}

Chapter3 STM32 应用程序加密的一种设计方案

原文链接:https://blog.csdn.net/u010058695/article/details/101014672

前言

STM32编译后的代码存在FLASH中,通过外部工具可以读出来全部数据,一旦硬件抄板一样,再将FLASH数据全部拷贝至抄板单片机中,既可以完全实现硬件和软件功能抄袭。因此,需要对自己的应用程序加密,即使被抄板和读取FLASH数据,拷贝过后仍然无法执行相应的功能。【ps:没有解不开的单片机,主要看解密的经济效益】

主要思路:利用每个芯片的96位唯一ID,进行一定的计算和单向加密,得到唯一的应用AppKey并保存至FLASH,运行APP时读取该FLASH位置的AppKey,并与计算得到的AppKey比较是否相同,如果相同则正常运行,不相同则退出。

因此,在正确运行APP之前,需要保证FLASH保存有AppKey,可以在设备出厂前提前通过代码方式写入FLASH,再烧写正常的APP代码。为了减小代码烧写的工作量,采用IAP的方式实现自动出厂配置,方案包括三个工程:BootLoader,Encrypt,APP。三个工程在FLASH中的内存分配与OTA-IAP相同。

一、计算AppKey

step1 :为避免出现UID_BASE的明文,在读取UID时,对其地址进行一定的简单运算,再读取UID。

c 复制代码
#define    ADDRSEED      (0x20170620)
#define    METHORDADDR   (ADDRSEED^1+1)
#define    METHORDEUID   (ADDRSEED|0x12345678)

volatile const uint32_t uidaddr[3] = {UID_BASE+METHORDADDR,UID_BASE+4-METHORDADDR,UID_BASE+8+METHORDADDR};

//get uid, by calc uidbase
//uid: ptr, 96byte length
static void Getuid(volatile uint32_t *uid)
{
    volatile uint32_t addrtemp;
    addrtemp = uidaddr[0] - METHORDADDR;
    uid[0] = *(volatile uint32_t*)(addrtemp);
    addrtemp = uidaddr[1] + METHORDADDR;
    uid[1] = *(volatile uint32_t*)(addrtemp);
    addrtemp = uidaddr[2] - METHORDADDR;
    uid[2] = *(volatile uint32_t*)(addrtemp);
}

step2 :对UID进一步简单加密。

c 复制代码
//encrypt uid
//euid: ptr, 96byte length
static void Encryptuid(volatile uint32_t *euid)
{
    uint32_t uid[3];
    Getuid(uid);
    euid[0] = uid[0] + METHORDEUID;
    euid[0] ^= ADDRSEED;
    euid[1] = uid[1] + METHORDEUID;
    euid[1] ^= ADDRSEED;
    euid[2] = uid[2] + METHORDEUID;
    euid[2] ^= ADDRSEED;
}

step3 :对EncryptUID计算MD5,计算128bit单向散列值。

c 复制代码
//generate md5 by euid
//key: ptr, 16byte length
void GenerateMD5(uint8_t *md5)
{
    uint32_t *euid;
    Encryptuid(euid);
    MD5_Init(&Context);
    MD5_Update(&Context,(uint8_t *)euid,96);
    MD5_Final(&Context,md5);
}

step4 :根据FLASH页容量大小,将MD5扩充至1024Byte,采用随机数扩充。

c 复制代码
//generate key
//key: ptr, 1024 length, md5 extend to 1024
void GenerateKey(uint8_t *key)
{
    uint16_t i,j;
    uint8_t md5val[16];
    GenerateMD5(md5val);
    j = 0;
    for(i = 0; i < 1024; i++)
    {
        if(i%64 == 0)
        {
            key[i] = md5val[j++];
        }
        else
        {
            srand1(HAL_GetTick());
            key[i] = randr(0,0xFF);
        }
    }
}

二、自动配置流程

Encrypt工程代码只在出厂时运行一次,目的是利用UID产生AppKey,并将其提前写入指定FLASH中,因此,该段代码执行一次后将擦除。可设置Encrypt在APPA区中运行,利用IAP功能,将APPB区的APP固件在执行完Encrypt固件后,搬移至APPA区。

具体地,出厂自动配置密钥流程如下:

Step1:上电启动单片机,首先执行BootLoader程序。

Step2:BootLoader读取Parameter参数区,此时参数区设置为无升级任务,BootLoader执行APPA区的代码,进入 Step3 。存在升级任务时,执行 Step6, Step7 。

Step3:BootLoader跳转至APPA,执行Encrypt代码,根据UID计算AppKey,执行 Step4 和 Step5 。

Step4:将计算的AppKey存入Parameter区指定的位置,并写入升级标志和APPB区相关固件参数。

Step5:重启单片机,进入BootLoader。

Step6:清除升级任务标志。

Step7:拷贝APPB代码至APPA区,即擦除Encrypt代码,最后执行重启进入 Step5 ,重启后运行真正的APP代码。

三、出厂固件合并

出厂前需要在STM32中烧写BootLoader、Encrypt和APP三份Hex固件,加大了时间开销,三份Hex固件存在FlASH的不同位置,地址容易出错。因此,可将三份Hex进行合并成一个Hex,进行一次烧写,按照自动配置流程完成加密和代码搬运工作。

BootLoader工程在程序一开始运行,其地址和空间大小分配仍然按照0x08000000和20kB分配,编译生成boot.hex。Encrypt工程和APP都在APPA区运行,因此,两者地址和空间大小分配为相同的0x08005000和50kB。APP.Hex只是保存在APPB区,带加密执行完成后通知Bootloader进行搬移。

出厂固件按照boot.Hex,encrypt.Hex,app.Hex的顺序合并,打开Hex文件,分别用后一个文件的全部内容替换前一个文件的最后一行,保存为hex格式就可以。

个人总结

头文件AppCryptography.h

c 复制代码
#ifndef  __BSP_APPCRYPTOGRAPHY_H__
#define  __BSP_APPCRYPTOGRAPHY_H__

#include <stdint.h>

/**
  * 函数功能: 计算一组数据的MD5值
  * 输入参数: data:指向待计算数据的首地址;length:待计算数据的长度;
  * 返 回 值: result:MD5结果返回值,16字节,128位
  * 说    明: 无
  */
int32_t cal_md5(unsigned char *result, unsigned char *data, int length);
void Getuid(void);


#endif
c 复制代码
#include "AppCryptography/AppCryptography.h"
#include <stdio.h>
#include <stdlib.h>
#include <stm32f410tx.h>

#define ROTATELEFT(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))

#define    ADDRSEED      (0x20170620)
#define    METHORDADDR   (ADDRSEED^1+1)
#define    METHORDEUID   (ADDRSEED|0x12345678)

volatile const uint32_t uidaddr[3] = {UID_BASE+METHORDADDR,UID_BASE+4-METHORDADDR,UID_BASE+8+METHORDADDR};
uint32_t uid[3] = {0x00,0x00,0x00};

//get uid, by calc uidbase
//uid: ptr, 96byte length
void Getuid(void)
//void Getuid(volatile uint32_t *uid)
{
//    volatile uint32_t addrtemp;
//    addrtemp = uidaddr[0] - METHORDADDR;
//    uid[0] = *(volatile uint32_t*)(addrtemp);
//    addrtemp = uidaddr[1] + METHORDADDR;
//    uid[1] = *(volatile uint32_t*)(addrtemp);
//    addrtemp = uidaddr[2] - METHORDADDR;
//    uid[2] = *(volatile uint32_t*)(addrtemp);

	HAL_GetUID(uid); //STM32不同系列,UID_BASE不一样
}

源文件AppCryptography.c
/**
 * @desc: convert message and mes_bkp string into integer array and store them in w
 */
static void md5_process_part1(uint32_t *w, unsigned char *message, uint32_t *pos, uint32_t mes_len, const unsigned char *mes_bkp)
{
    uint32_t i; // used in for loop

    for(i = 0; i <= 15; i++)
    {
        int32_t count = 0;
        while(*pos < mes_len && count <= 24)
        {
            w[i] += (((uint32_t)message[*pos]) << count);
            (*pos)++;
            count += 8;
        }
        while(count <= 24)
        {
            w[i] += (((uint32_t)mes_bkp[*pos - mes_len]) << count);
            (*pos)++;
            count += 8;
        }
    }
}

/**
 * @desc: start encryption based on w
 */
static void md5_process_part2(uint32_t abcd[4], uint32_t *w, const uint32_t k[64], const uint32_t s[64])
{
    uint32_t i; // used in for loop

    uint32_t a = abcd[0];
    uint32_t b = abcd[1];
    uint32_t c = abcd[2];
    uint32_t d = abcd[3];
    uint32_t f = 0;
    uint32_t g = 0;

    for(i = 0; i < 64; i++)
    {
        if(i >= 0 && i <= 15)
        {
            f = (b & c) | ((~b) & d);
            g = i;
        }else if(i >= 16 && i <= 31)
        {
            f = (d & b) | ((~d) & c);
            g = (5 * i + 1) % 16;
        }else if(i >= 32 && i <= 47)
        {
            f = b ^ c ^ d;
            g = (3 * i + 5) % 16;
        }else if(i >= 48 && i <= 63)
        {
            f = c ^ (b | (~d));
            g = (7 * i) % 16;
        }
        uint32_t temp = d;
        d = c;
        c = b;
        b = ROTATELEFT((a + f + k[i] + w[g]), s[i]) + b;
        a = temp;
    }

    abcd[0] += a;
    abcd[1] += b;
    abcd[2] += c;
    abcd[3] += d;
}

static const uint32_t k_table[]={
    0xd76aa478,0xe8c7b756,0x242070db,0xc1bdceee,
    0xf57c0faf,0x4787c62a,0xa8304613,0xfd469501,0x698098d8,
    0x8b44f7af,0xffff5bb1,0x895cd7be,0x6b901122,0xfd987193,
    0xa679438e,0x49b40821,0xf61e2562,0xc040b340,0x265e5a51,
    0xe9b6c7aa,0xd62f105d,0x02441453,0xd8a1e681,0xe7d3fbc8,
    0x21e1cde6,0xc33707d6,0xf4d50d87,0x455a14ed,0xa9e3e905,
    0xfcefa3f8,0x676f02d9,0x8d2a4c8a,0xfffa3942,0x8771f681,
    0x6d9d6122,0xfde5380c,0xa4beea44,0x4bdecfa9,0xf6bb4b60,
    0xbebfbc70,0x289b7ec6,0xeaa127fa,0xd4ef3085,0x04881d05,
    0xd9d4d039,0xe6db99e5,0x1fa27cf8,0xc4ac5665,0xf4292244,
    0x432aff97,0xab9423a7,0xfc93a039,0x655b59c3,0x8f0ccc92,
    0xffeff47d,0x85845dd1,0x6fa87e4f,0xfe2ce6e0,0xa3014314,
    0x4e0811a1,0xf7537e82,0xbd3af235,0x2ad7d2bb,0xeb86d391
};

static const uint32_t s_table[]={
    7,12,17,22,7,12,17,22,7,12,17,22,7,
    12,17,22,5,9,14,20,5,9,14,20,5,9,14,20,5,9,14,20,
    4,11,16,23,4,11,16,23,4,11,16,23,4,11,16,23,6,10,
    15,21,6,10,15,21,6,10,15,21,6,10,15,21
};


/* 函数体 --------------------------------------------------------------------*/
/**
  * 函数功能: 计算一组数据的MD5值
  * 输入参数: data:指向待计算数据的首地址;length:待计算数据的长度;
  * 返 回 值: result:MD5结果返回值,16字节,128位
  * 说    明: 无
  */
int32_t cal_md5(unsigned char *result, unsigned char *data, int length){
    if (result == NULL)
    {
        return 1;
    }

    uint32_t w[16];

    uint32_t i; // used in for loop

    uint32_t mes_len = length;
    uint32_t looptimes = (mes_len + 8) / 64 + 1;
    uint32_t abcd[] = {0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476};

    uint32_t pos = 0; // position pointer for message
    uint32_t bkp_len = 64 * looptimes - mes_len; // 经过计算发现不超过72

//    unsigned char *bkp_mes = (unsigned char *)calloc(1, bkp_len);
    unsigned char bkp_mes[80];
    for(int i = 0; i < 80; i++) //初始化
    {
        bkp_mes[i] = 0;
    }

    bkp_mes[0] = (unsigned char)(0x80);
    uint64_t mes_bit_len = ((uint64_t)mes_len) * 8;
    for(i = 0; i < 8; i++)
    {
        bkp_mes[bkp_len-i-1] = (unsigned char)((mes_bit_len & (0x00000000000000FF << (8 * (7 - i)))) >> (8 * (7 - i)));
    }

    for(i = 0; i < looptimes; i++)
    {
        for(int j = 0; j < 16; j++) //初始化
        {
            w[j] = 0x00000000;
        }

        md5_process_part1(w, data, &pos, mes_len, bkp_mes); // compute w

        md5_process_part2(abcd, w, k_table, s_table); // calculate md5 and store the result in abcd
    }

    for(int i = 0; i < 16; i++)
    {
        result[i] = ((unsigned char*)abcd)[i];
    }

    return 0;
}

具体使用方法

c 复制代码
uint8_t  data1[16] = "abcdefg012345678";
uint8_t  data_result[16] ={0};

int k = sizeof(data1);
cal_md5(data_result, data1, k);
相关推荐
天乐敲代码2 小时前
JAVASE入门九脚-集合框架ArrayList,LinkedList,HashSet,TreeSet,迭代
java·开发语言·算法
十年一梦实验室2 小时前
【Eigen教程】矩阵、数组和向量类(二)
线性代数·算法·矩阵
Kent_J_Truman2 小时前
【子矩阵——优先队列】
算法
tadus_zeng2 小时前
stm8s单片机(二)外部中断实验
单片机·嵌入式硬件
大专生学编程3 小时前
基于ESP32-IDF驱动GPIO输出控制LED
嵌入式硬件·esp32·esp-idf
快手技术3 小时前
KwaiCoder-23BA4-v1:以 1/30 的成本训练全尺寸 SOTA 代码续写大模型
算法·机器学习·开源
一只码代码的章鱼4 小时前
粒子群算法 笔记 数学建模
笔记·算法·数学建模·逻辑回归
小小小小关同学4 小时前
【JVM】垃圾收集器详解
java·jvm·算法
圆圆滚滚小企鹅。4 小时前
刷题笔记 贪心算法-1 贪心算法理论基础
笔记·算法·leetcode·贪心算法
Kacey Huang4 小时前
YOLOv1、YOLOv2、YOLOv3目标检测算法原理与实战第十三天|YOLOv3实战、安装Typora
人工智能·算法·yolo·目标检测·计算机视觉