简介
项目地址:https://github.com/armink/SFUD.git
SFUD 是一款开源的串行 SPI Flash 通用驱动库。由于现有市面的串行 Flash 种类居多,各个 Flash 的规格及命令存在差异, SFUD 就是为了解决这些 Flash 的差异现状而设计,让我们的产品能够支持不同品牌及规格的 Flash,提高了涉及到 Flash 功能的软件的可重用性及可扩展性,同时也可以规避 Flash 缺货或停产给产品所带来的风险。
先看效果
初始化
c
sfud_init();
sfud_flash *sfud_flash = sfud_get_device(SFUD_W25_DEVICE_INDEX);
sfud_device_init(sfud_flash);
随后可调用读写接口
c
sfud_err sfud_read(const sfud_flash *flash, uint32_t addr, size_t size, uint8_t *data);
sfud_err sfud_erase(const sfud_flash *flash, uint32_t addr, size_t size);
sfud_err sfud_write(const sfud_flash *flash, uint32_t addr, size_t size, const uint8_t *data);
sfud_err sfud_erase_write(const sfud_flash *flash, uint32_t addr, size_t size, const uint8_t *data);
驱动成功日志
shell
[SFUD]Start initialize Serial Flash Universal Driver(SFUD) V1.1.0.
[SFUD]You can get the latest version on https://github.com/armink/SFUD .
[SFUD]The flash device manufacturer ID is 0xEF, memory type ID is 0x40, capacity ID is 0x17.
[SFUD]Check SFDP header is OK. The reversion is V1.5, NPN is 0.
[SFUD]Check JEDEC basic flash parameter header is OK. The table id is 0, reversion is V1.5, length is 16, parameter table pointer is 0x000080.
[SFUD]JEDEC basic flash parameter table info:
[SFUD]MSB-LSB 3 2 1 0
[SFUD][0001] 0xFF 0xF9 0x20 0xE5
[SFUD][0002] 0x03 0xFF 0xFF 0xFF
[SFUD][0003] 0x6B 0x08 0xEB 0x44
[SFUD][0004] 0xBB 0x42 0x3B 0x08
[SFUD][0005] 0xFF 0xFF 0xFF 0xFE
[SFUD][0006] 0x00 0x00 0xFF 0xFF
[SFUD][0007] 0xEB 0x40 0xFF 0xFF
[SFUD][0008] 0x52 0x0F 0x20 0x0C
[SFUD][0009] 0x00 0x00 0xD8 0x10
[SFUD]4 KB Erase is supported throughout the device. Command is 0x20.
[SFUD]Write granularity is 64 bytes or larger.
[SFUD]Target flash status register is non-volatile.
[SFUD]3-Byte only addressing.
[SFUD]Capacity is 8388608 Bytes.
[SFUD]Flash device supports 4KB block erase. Command is 0x20.
[SFUD]Flash device supports 32KB block erase. Command is 0x52.
[SFUD]Flash device supports 64KB block erase. Command is 0xD8.
[SFUD]Found a Winbond flash chip. Size is 8388608 bytes.
[SFUD]Flash device reset success.
[SFUD]W25Q64JV flash device initialized successfully.
[SFUD]Found a Winbond flash chip. Size is 8388608 bytes.
[SFUD]Flash device reset success.
[SFUD]W25Q64JV flash device initialized successfully.
移植
移植时只需要适配SPI/QSPI接口即可,本文使用的是STM32H750+QSPI HAL库
将sfud文件夹添加到工程中(源代码和头文件路径)
shel
├─sfud
├─inc
├─port
└─src
修改sfud_cfg.h
添加flash列表
c
enum {
SFUD_W25_DEVICE_INDEX = 0,
};
#define SFUD_FLASH_DEVICE_TABLE \
{ \
[SFUD_W25_DEVICE_INDEX] = {.name = "W25Q64JV", .spi.name = "QSPI1"}, \
}
修改sfud_port.c
源代码如下,其中主要适配SPI的读写
c
#include "quadspi.h"
#include <sfud.h>
#include <stdarg.h>
static char log_buf[256];
void sfud_log_debug(const char *file, const long line, const char *format, ...);
void sfud_log_info(const char *format, ...);
static void spi_lock(const sfud_spi *spi)
{
__disable_irq();
}
static void spi_unlock(const sfud_spi *spi)
{
__enable_irq();
}
/**
* This function can send or send then receive QSPI data.
*/
sfud_err qspi_send_then_recv(const void *send_buf, size_t send_length, void *recv_buf, size_t recv_length)
{
QSPI_CommandTypeDef Cmdhandler;
unsigned char *ptr = (unsigned char *)send_buf;
size_t count = 0;
sfud_err result = SFUD_SUCCESS;
/* get instruction */
Cmdhandler.Instruction = ptr[0];
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_1_LINE;
count++;
/* get address */
if (send_length > 1)
{
if (send_length >= 4)
{
/* address size is 3 Byte */
Cmdhandler.Address = (ptr[1] << 16) | (ptr[2] << 8) | (ptr[3]);
Cmdhandler.AddressSize = QSPI_ADDRESS_24_BITS;
count += 3;
}
else
{
return SFUD_ERR_READ;
}
Cmdhandler.AddressMode = QSPI_ADDRESS_1_LINE;
}
else
{
/* no address stage */
Cmdhandler.Address = 0;
Cmdhandler.AddressMode = QSPI_ADDRESS_NONE;
Cmdhandler.AddressSize = 0;
}
Cmdhandler.AlternateBytes = 0;
Cmdhandler.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
Cmdhandler.AlternateBytesSize = 0;
Cmdhandler.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
Cmdhandler.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
Cmdhandler.DdrMode = QSPI_DDR_MODE_DISABLE;
Cmdhandler.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
if (send_buf && recv_buf)
{
/* recv data */
/* set dummy cycles */
if (count != send_length)
{
Cmdhandler.DummyCycles = (send_length - count) * 8;
}
else
{
Cmdhandler.DummyCycles = 0;
}
/* set recv size */
Cmdhandler.DataMode = QSPI_DATA_1_LINE;
Cmdhandler.NbData = recv_length;
HAL_QSPI_Command(&hqspi, &Cmdhandler, 5000);
if (recv_length != 0)
{
if (HAL_QSPI_Receive(&hqspi, recv_buf, 5000) != HAL_OK)
{
sfud_log_info("qspi recv data failed(%d)!", hqspi.ErrorCode);
hqspi.State = HAL_QSPI_STATE_READY;
result = SFUD_ERR_READ;
}
}
return result;
}
else
{
/* send data */
/* set dummy cycles */
Cmdhandler.DummyCycles = 0;
/* determine if there is data to send */
if (send_length - count > 0)
{
Cmdhandler.DataMode = QSPI_DATA_1_LINE;
}
else
{
Cmdhandler.DataMode = QSPI_DATA_NONE;
}
/* set send buf and send size */
Cmdhandler.NbData = send_length - count;
HAL_QSPI_Command(&hqspi, &Cmdhandler, 5000);
if (send_length - count > 0)
{
if (HAL_QSPI_Transmit(&hqspi, (uint8_t *)(ptr + count), 5000) != HAL_OK)
{
sfud_log_info("qspi send data failed(%d)!", hqspi.ErrorCode);
hqspi.State = HAL_QSPI_STATE_READY;
result = SFUD_ERR_WRITE;
}
}
return result;
}
}
/**
* SPI write data then read data
*/
static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
size_t read_size)
{
sfud_err result = SFUD_SUCCESS;
if (write_size && read_size)
{
/* read data */
qspi_send_then_recv(write_buf, write_size, read_buf, read_size);
}
else if (write_size)
{
/* send data */
qspi_send_then_recv(write_buf, write_size, NULL, NULL);
}
return result;
}
#ifdef SFUD_USING_QSPI
/**
* read flash data by QSPI
*/
static sfud_err qspi_read(const struct __sfud_spi *spi, uint32_t addr, sfud_qspi_read_cmd_format *qspi_read_cmd_format,
uint8_t *read_buf, size_t read_size)
{
sfud_err result = SFUD_SUCCESS;
QSPI_CommandTypeDef Cmdhandler;
extern QSPI_HandleTypeDef hqspi;
/* set cmd struct */
Cmdhandler.Instruction = qspi_read_cmd_format->instruction;
if(qspi_read_cmd_format->instruction_lines == 0)
{
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_NONE;
}else if(qspi_read_cmd_format->instruction_lines == 1)
{
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_1_LINE;
}else if(qspi_read_cmd_format->instruction_lines == 2)
{
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_2_LINES;
}else if(qspi_read_cmd_format->instruction_lines == 4)
{
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_4_LINES;
}
Cmdhandler.Address = addr;
Cmdhandler.AddressSize = QSPI_ADDRESS_24_BITS;
if(qspi_read_cmd_format->address_lines == 0)
{
Cmdhandler.AddressMode = QSPI_ADDRESS_NONE;
}else if(qspi_read_cmd_format->address_lines == 1)
{
Cmdhandler.AddressMode = QSPI_ADDRESS_1_LINE;
}else if(qspi_read_cmd_format->address_lines == 2)
{
Cmdhandler.AddressMode = QSPI_ADDRESS_2_LINES;
}else if(qspi_read_cmd_format->address_lines == 4)
{
Cmdhandler.AddressMode = QSPI_ADDRESS_4_LINES;
}
Cmdhandler.AlternateBytes = 0;
Cmdhandler.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
Cmdhandler.AlternateBytesSize = 0;
Cmdhandler.DummyCycles = qspi_read_cmd_format->dummy_cycles;
Cmdhandler.NbData = read_size;
if(qspi_read_cmd_format->data_lines == 0)
{
Cmdhandler.DataMode = QSPI_DATA_NONE;
}else if(qspi_read_cmd_format->data_lines == 1)
{
Cmdhandler.DataMode = QSPI_DATA_1_LINE;
}else if(qspi_read_cmd_format->data_lines == 2)
{
Cmdhandler.DataMode = QSPI_DATA_2_LINES;
}else if(qspi_read_cmd_format->data_lines == 4)
{
Cmdhandler.DataMode = QSPI_DATA_4_LINES;
}
Cmdhandler.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
Cmdhandler.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
Cmdhandler.DdrMode = QSPI_DDR_MODE_DISABLE;
Cmdhandler.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
HAL_QSPI_Command(&hqspi, &Cmdhandler, 5000);
if (HAL_QSPI_Receive(&hqspi, read_buf, 5000) != HAL_OK)
{
sfud_log_info("qspi recv data failed(%d)!", hqspi.ErrorCode);
hqspi.State = HAL_QSPI_STATE_READY;
result = SFUD_ERR_READ;
}
return result;
}
#endif /* SFUD_USING_QSPI */
/* about 100 microsecond delay */
static void retry_delay_100us(void)
{
uint32_t delay = 2400;
while (delay--)
;
}
sfud_err sfud_spi_port_init(sfud_flash *flash)
{
sfud_err result = SFUD_SUCCESS;
switch (flash->index)
{
case SFUD_W25_DEVICE_INDEX: {
/* set the interfaces and data */
flash->spi.wr = spi_write_read;
flash->spi.qspi_read = qspi_read;
flash->spi.lock = spi_lock;
flash->spi.unlock = spi_unlock;
// flash->spi.user_data = &spi1;
/* about 100 microsecond delay */
flash->retry.delay = retry_delay_100us;
/* adout 60 seconds timeout */
flash->retry.times = 60 * 10000;
break;
}
}
return result;
}
#include "rtthread.h"
/**
* This function is print debug info.
*
* @param file the file which has call this function
* @param line the line number which has call this function
* @param format output format
* @param ... args
*/
void sfud_log_debug(const char *file, const long line, const char *format, ...)
{
va_list args;
/* args point to the first variable parameter */
va_start(args, format);
//rt_kprintf("[SFUD](%s:%ld) ", file, line);
rt_kprintf("[SFUD]");
/* must use vprintf to print */
vsnprintf(log_buf, sizeof(log_buf), format, args);
rt_kprintf("%s\n", log_buf);
va_end(args);
}
/**
* This function is print routine info.
*
* @param format output format
* @param ... args
*/
void sfud_log_info(const char *format, ...)
{
va_list args;
/* args point to the first variable parameter */
va_start(args, format);
rt_kprintf("[SFUD]");
/* must use vprintf to print */
vsnprintf(log_buf, sizeof(log_buf), format, args);
rt_kprintf("%s\n", log_buf);
va_end(args);
}