【数据清洗】快速对目标检测标注数据进行分类筛选

关键词: python 、 xml、yolo、分类筛选、目标检测、 数据清洗、 脚本

背景

数据集的质量往往不是那么好,通常伴随着非目标物体的出现进行误标注,或者是需要已标注的数据集进行分类筛选。现在我们简化假设如下任务
主题: 对安全帽数据集进行清洗;
内容: 安全帽数据集中含有红色帽、蓝色帽、黄色帽这三种颜色;
需求: 对安全帽数据集标签都是helmet,现在需要对helmet分为三种颜色

需求分析

这里我们有三种颜色的帽子,但是标签都是helmet,现在需要将他们分开,然后重新修改name。我们可以通过脚本语言实现读取图像以及标签文件,将标签文件的标注信息绘制在读取图像上,按下指定按键将所显示的图像移动至指定文件夹中达到数据清洗的目的。

在这里对上述进行分析可以得到两个个关键点:

  1. 读取图像及对应的标注信息
  2. 监控键盘按键是否被按下

实现

这里我们使用python语言实现上述的两个核心功能在实现,这里我们使用opencv读取图像,然后读取该图像名对应的标注图像:

shell 复制代码
# 获取xml信息
def parse_xml(self, xml_file):
    tree = ET.parse(xml_file)
    root = tree.getroot()
    boxes = []

    for obj in root.findall('object'):
        name = str(obj.find('name').text)
        xmin = int(obj.find('bndbox').find('xmin').text)
        ymin = int(obj.find('bndbox').find('ymin').text)
        xmax = int(obj.find('bndbox').find('xmax').text)
        ymax = int(obj.find('bndbox').find('ymax').text)
        boxes.append((name, xmin, ymin, xmax, ymax))

    return boxes

def fun_1(self):
    global key_char
    img_path, xml_path = self.open_file()
    for name in os.listdir(img_path):
        self.img_name = name
        self.xml_name = name[:-3] + "xml"
        self.img_file = os.path.join(img_path, self.img_name)
        self.xml_file = os.path.join(xml_path, self.xml_name)

        image = cv2.imread(self.img_file)
        boxes = self.parse_xml(self.xml_file)
        for box in boxes:
            name, xmin, ymin, xmax, ymax = box
        cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (255, 0, 0), 3)
        image = cv2.resize(image, (640, 480), interpolation=cv2.INTER_LINEAR)
        cv2.imshow('Image with Boxes', image)
        key = cv2.waitKey(0) & 0xFF

监控键盘按键是否被按下这里我们调用pynput库中的keyboard实现:

shell 复制代码
def on_key(self, key):
    global key_char
    key_char = key.char

def key_press(self):
    with keyboard.Listener(on_press=self.on_key) as listener:
        listener.join()

后续根据这两个核心功能,采用多线程使显示图像标注信息与按键监控逐步调试即可完成。

相关推荐
好开心啊没烦恼1 小时前
Python 数据分析:计算,分组统计1,df.groupby()。听故事学知识点怎么这么容易?
开发语言·python·数据挖掘·数据分析·pandas
lljss20202 小时前
Python11中创建虚拟环境、安装 TensorFlow
开发语言·python·tensorflow
空中湖2 小时前
tensorflow武林志第二卷第九章:玄功九转
人工智能·python·tensorflow
CodeCraft Studio3 小时前
CAD文件处理控件Aspose.CAD教程:使用 Python 将绘图转换为 Photoshop
python·photoshop·cad·aspose·aspose.cad
Python×CATIA工业智造5 小时前
Frida RPC高级应用:动态模拟执行Android so文件实战指南
开发语言·python·pycharm
千宇宙航5 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
wenzhangli76 小时前
OneCode 图表组件核心优势解析
数据可视化
onceco6 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
狐凄6 小时前
Python实例题:基于 Python 的简单聊天机器人
开发语言·python
悦悦子a啊7 小时前
Python之--基本知识
开发语言·前端·python