【数据清洗】快速对目标检测标注数据进行分类筛选

关键词: python 、 xml、yolo、分类筛选、目标检测、 数据清洗、 脚本

背景

数据集的质量往往不是那么好,通常伴随着非目标物体的出现进行误标注,或者是需要已标注的数据集进行分类筛选。现在我们简化假设如下任务
主题: 对安全帽数据集进行清洗;
内容: 安全帽数据集中含有红色帽、蓝色帽、黄色帽这三种颜色;
需求: 对安全帽数据集标签都是helmet,现在需要对helmet分为三种颜色

需求分析

这里我们有三种颜色的帽子,但是标签都是helmet,现在需要将他们分开,然后重新修改name。我们可以通过脚本语言实现读取图像以及标签文件,将标签文件的标注信息绘制在读取图像上,按下指定按键将所显示的图像移动至指定文件夹中达到数据清洗的目的。

在这里对上述进行分析可以得到两个个关键点:

  1. 读取图像及对应的标注信息
  2. 监控键盘按键是否被按下

实现

这里我们使用python语言实现上述的两个核心功能在实现,这里我们使用opencv读取图像,然后读取该图像名对应的标注图像:

shell 复制代码
# 获取xml信息
def parse_xml(self, xml_file):
    tree = ET.parse(xml_file)
    root = tree.getroot()
    boxes = []

    for obj in root.findall('object'):
        name = str(obj.find('name').text)
        xmin = int(obj.find('bndbox').find('xmin').text)
        ymin = int(obj.find('bndbox').find('ymin').text)
        xmax = int(obj.find('bndbox').find('xmax').text)
        ymax = int(obj.find('bndbox').find('ymax').text)
        boxes.append((name, xmin, ymin, xmax, ymax))

    return boxes

def fun_1(self):
    global key_char
    img_path, xml_path = self.open_file()
    for name in os.listdir(img_path):
        self.img_name = name
        self.xml_name = name[:-3] + "xml"
        self.img_file = os.path.join(img_path, self.img_name)
        self.xml_file = os.path.join(xml_path, self.xml_name)

        image = cv2.imread(self.img_file)
        boxes = self.parse_xml(self.xml_file)
        for box in boxes:
            name, xmin, ymin, xmax, ymax = box
        cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (255, 0, 0), 3)
        image = cv2.resize(image, (640, 480), interpolation=cv2.INTER_LINEAR)
        cv2.imshow('Image with Boxes', image)
        key = cv2.waitKey(0) & 0xFF

监控键盘按键是否被按下这里我们调用pynput库中的keyboard实现:

shell 复制代码
def on_key(self, key):
    global key_char
    key_char = key.char

def key_press(self):
    with keyboard.Listener(on_press=self.on_key) as listener:
        listener.join()

后续根据这两个核心功能,采用多线程使显示图像标注信息与按键监控逐步调试即可完成。

相关推荐
破烂pan1 分钟前
lmdeploy.pytorch 新模型支持代码修改
python·深度学习·llm·lmdeploy
麦麦大数据1 小时前
F047 vue3+flask微博舆情推荐可视化问答系统
python·flask·知识图谱·neo4j·推荐算法·舆情分析·舆情监测
MediaTea1 小时前
Python 第三方库:Flask(轻量级 Web 框架)
开发语言·前端·后端·python·flask
java干货1 小时前
Spring Boot 为什么“抛弃”了 spring.factories?
spring boot·python·spring
2501_941111822 小时前
使用Python进行网络设备自动配置
jvm·数据库·python
源码之家2 小时前
基于python租房大数据分析系统 房屋数据分析推荐 scrapy爬虫+可视化大屏 贝壳租房网 计算机毕业设计 推荐系统(源码+文档)✅
大数据·爬虫·python·scrapy·数据分析·推荐算法·租房
源码之家2 小时前
机器学习:基于python租房推荐系统 预测算法 协同过滤推荐算法 房源信息 可视化 机器学习-线性回归预测模型 Flask框架(源码+文档)✅
大数据·python·算法·机器学习·数据分析·线性回归·推荐算法
nnn__nnn2 小时前
卷积神经网络经典架构全景解析:从 ILSVRC 竞赛到视觉技术的生态级演进
计算机视觉·架构·cnn
循环过三天2 小时前
7.7、Python-常用内置函数
笔记·python·学习