【Stable Diffusion】入门-03:图生图基本步骤+参数解读

目录

  • [1 图生图原理](#1 图生图原理)
  • [2 基本步骤](#2 基本步骤)
    • [2.1 导入图片](#2.1 导入图片)
    • [2.2 书写提示词](#2.2 书写提示词)
    • [2.3 参数调整](#2.3 参数调整)
  • [3 随机种子的含义](#3 随机种子的含义)
  • [4 拓展应用](#4 拓展应用)

1 图生图原理

当提示词不足以表达你的想法,或者你希望以一个更为简单清晰的方式传递一些要求的时候,可以给AI输入一张图片,此时图片和文字是相当的,都是作为一种信息输送给模型,让它拿来生成一张新的图片。模型可以从图片上获取更多的信息,原本的图片上记录的像素信息会在加噪和去噪的过程里被作为一种特征反映到最终的成品上,会让最后成品跟一开始这张图片足够像,给人一种重新绘制的表象。

2 基本步骤

2.1 导入图片

  1. 点击img2img
  2. 点击左下方区域或者直接将图片拖到左下方,上传图片

    在图生图区块下方,有一系列进阶的功能选项。

2.2 书写提示词

图生图也需要提示词,提示词也很重要,按照上一篇博文书写提示词

2.3 参数调整

图生图大部分参数和文生图一样,也有些不同的参数。

  1. Denoising strength:重绘幅度,生成图和原图有多像。如果是一键式生成漫画的方式,推荐0.6~0.8。
  2. 图像分辨率:推荐使用原图的尺寸,如果原始尺寸很大,按比例往下折算到自己的设备能画出来的那个安全区间内,宽高比保持一致。如果想生成其他尺寸比例的图片,推荐先用其他软件裁剪成想要的比例再导入。如果设置的宽高比跟原始的不一样,可能会导致画面的变形。
  3. 图片导入区块下方的几个缩放模式可以帮助裁剪一部分。Just resize (latent upscale) 直接缩放(放大潜变量)不推荐使用,对显存要求很高。

3 随机种子的含义

我们在生成图片时,每次的结果都是不同的。如果我们想要当前生成图的人物形象,只修改背景,那是否能做到呢?

AI生成图片是随机的,但每一次生成都有一套描绘方式,这个描绘方式就会被记录成一组随机数,这就叫做随机种子seed。

不同的随机种子,出来的效果是随机性强的。如果使用同一个随机种子,那生成的图像里就必然会存在很多的相似之处,因为它是用同一套方法随机出来的。

点击骰子,可以把随机参数设置成-1,就是每次都随机生成一个新图。

点击循环按钮,就会把种子设置成你的上一张图片生成的那个种子数。

图库里找到喜欢的图片对应的种子数,复制出来填到随机种子栏里,再通过提示词,把背景的元素加上,就可以保持人物形象不变,只改变背景,最大程度地保持了人物风格的相对一致。

4 拓展应用

  1. 风格转换:将真实人像转成二次元风格,通过修改提示词变换不同的风格。或者将二次元人物真实化。
  2. 拟人化:将不是人像的图片导入,以人物属性的提示词对他进行描述,可以实现静物和风景的拟人化。
  3. 图片细化:通过ps等软件搭建简单的框架,或者乱涂乱画,再借助图生图重绘成炫酷的画面效果。
相关推荐
七牛云行业应用28 分钟前
图灵奖得主萨顿演讲解读:深度学习的局限与AI新范式
人工智能·深度学习
IMER SIMPLE30 分钟前
人工智能-python-深度学习-神经网络VGG(详解)
人工智能·python·深度学习
藓类少女1 小时前
【深度学习】重采样(Resampling)
人工智能·深度学习
乐予吕1 小时前
GEO 入门:从 SEO 到 GEO 的转变
aigc·openai·seo
动能小子ohhh2 小时前
AI智能体(Agent)大模型入门【2】--基于llamaindx部署本地的聊天模型。
人工智能·python·aigc·ai编程
缘友一世2 小时前
PyTorch深度学习实战【10】之神经网络的损失函数
pytorch·深度学习·神经网络
却道天凉_好个秋2 小时前
深度学习(六):代价函数的意义
人工智能·深度学习·代价函数
星期天要睡觉3 小时前
深度学习——基于 PyTorch 的 CBOW 模型实现自然语言处理
pytorch·深度学习·自然语言处理
Wiktok3 小时前
[Wit]CnOCR模型训练全流程简化记录(包括排除BUG)
python·深度学习·bug
用户5191495848454 小时前
Braintree iOS Drop-in SDK - 一站式支付解决方案
人工智能·aigc