二刷代码随想录——动态规划day48

文章目录


前言

一个本硕双非的小菜鸡,备战24年秋招,计划二刷完卡子哥的刷题计划,加油!

二刷决定精刷了,于是参加了卡子哥的刷题班,训练营为期60天,我一定能坚持下去,迎来两个月后的脱变的,加油!

推荐一手卡子哥的刷题网站,感谢卡子哥。代码随想录

动态规知识点

终于来到了守关boss。。。

动态规划中每一个状态一定是由上一个状态推导出来的

动规是由前一个状态推导出来的,而贪心是局部直接选最优的。

动规五部曲

动态规划一般分为如下五步:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组
c 复制代码
        //1. 确定dp数组(dp table)以及下标的含义
        
        //2. 确定递推公式

        //3. dp数组如何初始化

        //4. 确定遍历顺序

        //5. 举例推导dp数组

解题时候多把dp数组打印出来,看看究竟是不是按照自己思路推导的。

写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果。

然后再写代码,如果代码没通过就打印dp数组,看看是不是和自己预先推导的哪里不一样。

如果打印出来和自己预先模拟推导是一样的,那么就是自己的递归公式、初始化或者遍历顺序有问题了。

如果和自己预先模拟推导的不一样,那么就是代码实现细节有问题。

一、121. 买卖股票的最佳时机

121. 买卖股票的最佳时机

Note:动态规划解法

cpp 复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        if (len == 0) return 0;

        vector<vector<int>> dp(len, vector<int>(2));
        //1. 确定dp数组(dp table)以及下标的含义
        //dp[i][0] 表示第i天持有股票所得最多现金
        //dp[i][1] 表示第i天不持有股票所得最多现金
        
        //2. 确定递推公式
        //dp[i][0] = max(dp[i - 1][0], -prices[i]);
        //dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

        //3. dp数组如何初始化
        dp[0][0] = -prices[0];
        dp[0][1] = 0;

        //4. 确定遍历顺序
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], -prices[i]);
            dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
        }

        //5. 举例推导dp数组
        return dp[len - 1][1];
    }
};

二、122. 买卖股票的最佳时机 II

122. 买卖股票的最佳时机 II

Note:稍稍有些许不同

cpp 复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        if (len == 0) return 0;

        vector<vector<int>> dp(len, vector<int>(2));
        //1. 确定dp数组(dp table)以及下标的含义
        //dp[i][0] 表示第i天持有股票所得最多现金
        //dp[i][1] 表示第i天不持有股票所得最多现金

        //2. 确定递推公式
        //dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
        //dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

        //3. dp数组如何初始化
        dp[0][0] = -prices[0];
        dp[0][1] = 0;

        //4. 确定遍历顺序
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
        }

        //5. 举例推导dp数组
        return dp[len - 1][1];
    }
};

总结

动态规划法,和分治法极其相似。区别就是,在求解子问题时,会保存该子问题的解,后面的子问题求解时,可以直接拿来计算。

相关推荐
前端小L2 小时前
贪心算法专题(十):维度权衡的艺术——「根据身高重建队列」
javascript·算法·贪心算法
方得一笔2 小时前
自定义常用的字符串函数(strlen,strcpy,strcmp,strcat)
算法
YJlio3 小时前
VolumeID 学习笔记(13.10):卷序列号修改与资产标识管理实战
windows·笔记·学习
小龙3 小时前
【学习笔记】多标签交叉熵损失的原理
笔记·学习·多标签交叉熵损失
Xの哲學3 小时前
Linux SMP 实现机制深度剖析
linux·服务器·网络·算法·边缘计算
Thera7773 小时前
状态机(State Machine)详解:原理、优缺点与 C++ 实战示例
开发语言·c++
linux开发之路3 小时前
C++高性能日志库开发实践
c++·c++项目·后端开发·c++新特性·c++校招
wuk9983 小时前
使用PCA算法进行故障诊断的MATLAB仿真
算法·matlab
知识分享小能手3 小时前
Ubuntu入门学习教程,从入门到精通,Ubuntu 22.04的Linux网络配置(14)
linux·学习·ubuntu
额呃呃3 小时前
二分查找细节理解
数据结构·算法