二刷代码随想录——动态规划day48

文章目录


前言

一个本硕双非的小菜鸡,备战24年秋招,计划二刷完卡子哥的刷题计划,加油!

二刷决定精刷了,于是参加了卡子哥的刷题班,训练营为期60天,我一定能坚持下去,迎来两个月后的脱变的,加油!

推荐一手卡子哥的刷题网站,感谢卡子哥。代码随想录

动态规知识点

终于来到了守关boss。。。

动态规划中每一个状态一定是由上一个状态推导出来的

动规是由前一个状态推导出来的,而贪心是局部直接选最优的。

动规五部曲

动态规划一般分为如下五步:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组
c 复制代码
        //1. 确定dp数组(dp table)以及下标的含义
        
        //2. 确定递推公式

        //3. dp数组如何初始化

        //4. 确定遍历顺序

        //5. 举例推导dp数组

解题时候多把dp数组打印出来,看看究竟是不是按照自己思路推导的。

写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果。

然后再写代码,如果代码没通过就打印dp数组,看看是不是和自己预先推导的哪里不一样。

如果打印出来和自己预先模拟推导是一样的,那么就是自己的递归公式、初始化或者遍历顺序有问题了。

如果和自己预先模拟推导的不一样,那么就是代码实现细节有问题。

一、121. 买卖股票的最佳时机

121. 买卖股票的最佳时机

Note:动态规划解法

cpp 复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        if (len == 0) return 0;

        vector<vector<int>> dp(len, vector<int>(2));
        //1. 确定dp数组(dp table)以及下标的含义
        //dp[i][0] 表示第i天持有股票所得最多现金
        //dp[i][1] 表示第i天不持有股票所得最多现金
        
        //2. 确定递推公式
        //dp[i][0] = max(dp[i - 1][0], -prices[i]);
        //dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

        //3. dp数组如何初始化
        dp[0][0] = -prices[0];
        dp[0][1] = 0;

        //4. 确定遍历顺序
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], -prices[i]);
            dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
        }

        //5. 举例推导dp数组
        return dp[len - 1][1];
    }
};

二、122. 买卖股票的最佳时机 II

122. 买卖股票的最佳时机 II

Note:稍稍有些许不同

cpp 复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        if (len == 0) return 0;

        vector<vector<int>> dp(len, vector<int>(2));
        //1. 确定dp数组(dp table)以及下标的含义
        //dp[i][0] 表示第i天持有股票所得最多现金
        //dp[i][1] 表示第i天不持有股票所得最多现金

        //2. 确定递推公式
        //dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
        //dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

        //3. dp数组如何初始化
        dp[0][0] = -prices[0];
        dp[0][1] = 0;

        //4. 确定遍历顺序
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
        }

        //5. 举例推导dp数组
        return dp[len - 1][1];
    }
};

总结

动态规划法,和分治法极其相似。区别就是,在求解子问题时,会保存该子问题的解,后面的子问题求解时,可以直接拿来计算。

相关推荐
qq_3863226931 分钟前
华为网路设备学习-32(BGP协议 七)路由反射器与联邦
网络·学习
萘柰奈31 分钟前
Unity学习----【进阶】Addressables(二)--加载资源与打包及更新
学习·unity
Yingye Zhu(HPXXZYY)33 分钟前
ICPC 2023 Nanjing R L 题 Elevator
算法
晚风(●•σ )2 小时前
C++语言程序设计——06 字符串
开发语言·c++
晚云与城3 小时前
今日分享:C++ -- list 容器
开发语言·c++
阿维的博客日记3 小时前
LeetCode 139. 单词拆分 - 动态规划解法详解
leetcode·动态规划·代理模式
兰雪簪轩3 小时前
分布式通信平台测试报告
开发语言·网络·c++·网络协议·测试报告
liliangcsdn4 小时前
Leiden社区发现算法的学习和示例
学习·数据分析·知识图谱
程序员Xu4 小时前
【LeetCode热题100道笔记】二叉树的右视图
笔记·算法·leetcode
笑脸惹桃花4 小时前
50系显卡训练深度学习YOLO等算法报错的解决方法
深度学习·算法·yolo·torch·cuda