【目标跟踪】【MMTracking的部署与开发】02 验证是否成功部署

【目标跟踪】【MMTracking的部署与开发】02 验证是否成功部署

3.验证

为了验证MMTracking和所需的环境是否正确安装,我们可以运行MOT、VID、SOT演示脚本。

python 复制代码
python demo/demo_mot_vis.py configs/mot/deepsort/sort_faster-rcnn_fpn_4e_mot17-private.→py --input demo/demo.mp4 --output mot.mp4

在命令行终端输入上面的代码,在项目文件里面会输出一个叫mot.mp4的视频,可以播放

相关推荐
云空42 分钟前
《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
运维·人工智能·web安全·网络安全·开源·网络攻击模型·安全威胁分析
AIGC大时代43 分钟前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
山晨啊82 小时前
2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文
人工智能·机器学习
一水鉴天2 小时前
为AI聊天工具添加一个知识系统 之77 详细设计之18 正则表达式 之5
人工智能·正则表达式
davenian3 小时前
DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力
人工智能·深度学习·语言模型·deepseek
X.AI6663 小时前
【大模型LLM面试合集】大语言模型架构_llama系列模型
人工智能·语言模型·llama
CM莫问3 小时前
什么是门控循环单元?
人工智能·pytorch·python·rnn·深度学习·算法·gru
饮马长城窟3 小时前
Paddle和pytorch不可以同时引用
人工智能·pytorch·paddle
机器之心3 小时前
全面梳理200+篇前沿论文,视觉生成模型理解物理世界规律的通关密码,都在这篇综述里了!
人工智能
池佳齐4 小时前
《AI大模型开发笔记》DeepSeek技术创新点
人工智能·笔记