pytorch loss及其梯度

目录

  • 1.loss的种类
    • [1.1 MSE](#1.1 MSE)
    • [1.2 MSE推导](#1.2 MSE推导)
    • [1.3 autograd.grad](#1.3 autograd.grad)
    • [1.4 loss.backward](#1.4 loss.backward)
  • [2. Softmax](#2. Softmax)
    • [2.1 softmax推导](#2.1 softmax推导)

1.loss的种类

常见两种一种是均方差,一种是交叉熵

1.1 MSE

1.2 MSE推导

1.3 autograd.grad

1.4 loss.backward


注意:autograd.grad直接返回梯度,而backward梯度保存再w.grad中

2. Softmax

softmax函数范围是[0,1]所有分类概率和等于1,softmax的特性是使概率大的更大,概率小的更小。

2.1 softmax推导

  • i=j
  • i/=j
  • 。总结
  • 应用
相关推荐
有为少年17 分钟前
Welford 算法 | 优雅地计算海量数据的均值与方差
人工智能·深度学习·神经网络·学习·算法·机器学习·均值算法
GISer_Jing30 分钟前
跨境营销前端AI应用业务领域
前端·人工智能·aigc
Ven%32 分钟前
从单轮问答到连贯对话:RAG多轮对话技术详解
人工智能·python·深度学习·神经网络·算法
OpenCSG35 分钟前
OpenCSG社区:激发城市AI主权创新引擎
人工智能·opencsg·agentichub
谈笑也风生37 分钟前
经典算法题型之复数乘法(二)
开发语言·python·算法
大厂技术总监下海40 分钟前
没有千卡GPU,如何从0到1构建可用LLM?nanoChat 全栈实践首次公开
人工智能·开源
机器之心40 分钟前
谁还敢说谷歌掉队?2025年,它打了一场漂亮的翻身仗
人工智能·openai
元智启41 分钟前
企业AI智能体加速产业重构:政策红利与场景落地双轮驱动——从技术验证到价值交付的范式跃迁
人工智能·重构
智算菩萨41 分钟前
强化学习从单代理到多代理系统的理论与算法架构综述
人工智能·算法·强化学习
San30.42 分钟前
从零到一:开启 LangChain 的 AI 工程化之旅
人工智能·langchain·node.js