机器学习是什么?

机器学习是一种人工智能(AI)的分支,其主要目标是使计算机系统能够通过数据和经验来改进和学习,而无需明确地编程。在机器学习中,计算机系统会通过对大量数据进行学习和分析,从中发现模式和规律,然后利用这些模式和规律来做出预测或者决策。

核心概念包括:

  • 数据驱动:机器学习的核心思想是通过数据来驱动模型的学习和改进。
  • 模型和参数:模型是对数据的某种潜在结构的假设表示,包含需要通过学习过程调整的参数。
  • 学习算法:机器学习算法用于训练模型,如监督学习、无监督学习和强化学习。

应用领域包括自然语言处理、计算机视觉、推荐系统、医疗诊断等。例如,自然语言处理领域的语言模型BERT,计算机视觉领域的卷积神经网络(CNN),推荐系统领域的个性化推荐算法等都是机器学习在不同领域的应用案例。

机器学习的学习方法包括监督学习、无监督学习和强化学习。监督学习利用已知输入和输出的训练数据来训练模型,无监督学习从未标记的数据中学习数据的结构和模式,强化学习通过与环境的交互来学习最优的决策策略。

具体的机器学习算法有:

  • 回归算法
    回归算法是试图采用对误差的衡量来探索变量之间的关系的一类算法。回归算法是统计机器学习的利器。在机器学习领域,人们说起回归,有时候是指一类问题,有时候是指一类算法,这一点常常会使初学者有所困惑。常见的回归算法包括:最小二乘法(Ordinary Least Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(Multivariate Adaptive Regression Splines)以及本地散点平滑估计(Locally Estimated Scatterplot Smoothing)。
  • 基于实例的算法
    基于实例的算法常常用来对决策问题建立模型,这样的模型常常先选取一批样本数据,然后根据某些近似性把新数据与样本数据进行比较。通过这种方式来寻找最佳的匹配。因此,基于实例的算法常常也被称为"赢家通吃"学习或者"基于记忆的学习"。常见的算法包括 k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing Map , SOM)。
  • 正则化方法
    正则化方法是其他算法(通常是回归算法)的延伸,根据算法的复杂度对算法进行调整。正则化方法通常对简单模型予以奖励而对复杂算法予以惩罚。常见的算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及弹性网络(Elastic Net)。
  • 决策树学习
    决策树算法根据数据的属性采用树状结构建立决策模型, 决策树模型常常用来解决分类和回归问题。常见的算法包括:分类及回归树(Classification And Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 随机森林(Random Forest), 多元自适应回归样条(MARS)以及梯度推进机(Gradient Boosting Machine, GBM)
  • 贝叶斯方法
    贝叶斯方法算法是基于贝叶斯定理的一类算法,主要用来解决分类和回归问题。常见算法包括:朴素贝叶斯算法,平均单依赖估计(Averaged One-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN)。
  • 基于核的算法
    基于核的算法中最著名的莫过于支持向量机(SVM)了。 基于核的算法把输入数据映射到一个高阶的向量空间, 在这些高阶向量空间里, 有些分类或者回归问题能够更容易的解决。 常见的基于核的算法包括:支持向量机(Support Vector Machine, SVM), 径向基函数(Radial Basis Function ,RBF), 以及线性判别分析(Linear Discriminate Analysis ,LDA)等。
  • 聚类算法
    聚类,就像回归一样,有时候人们描述的是一类问题,有时候描述的是一类算法。聚类算法通常按照中心点或者分层的方式对输入数据进行归并。所以的聚类算法都试图找到数据的内在结构,以便按照最大的共同点将数据进行归类。常见的聚类算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM)。
  • 关联规则学习
    关联规则学习通过寻找最能够解释数据变量之间关系的规则,来找出大量多元数据集中有用的关联规则。常见算法包括 Apriori算法和Eclat算法等。
  • 遗传算法(genetic algorithm)
    遗传算法模拟生物繁殖的突变、交换和达尔文的自然选择(在每一生态环境中适者生存)。它把问题可能的解编码为一个向量,称为个体,向量的每一个元素称为基因,并利用目标函数(相应于自然选择标准)对群体(个体的集合)中的每一个个体进行评价,根据评价值(适应度)对个体进行选择、交换、变异等遗传操作,从而得到新的群体。遗传算法适用于非常复杂和困难的环境,比如,带有大量噪声和无关数据、事物不断更新、问题目标不能明显和精确地定义,以及通过很长的执行过程才能确定当前行为的价值等。同神经网络一样,遗传算法的研究已经发展为人工智能的一个独立分支,其代表人物为霍勒德(J.H.Holland)。
  • 人工神经网络
    人工神经网络算法模拟生物神经网络,是一类模式匹配算法。通常用于解决分类和回归问题。人工神经网络是机器学习的一个庞大的分支,有几百种不同的算法。(其中深度学习就是其中的一类算法,我们会单独讨论),重要的人工神经网络算法包括:感知器神经网络(Perceptron Neural Network), 反向传递(Back Propagation), Hopfield网络,自组织映射(Self-Organizing Map, SOM)。
  • 深度学习
    深度学习算法是对人工神经网络的发展。 在近期赢得了很多关注, 特别是百度也开始发力深度学习后, 更是在国内引起了很多关注。 在计算能力变得日益廉价的今天,深度学习试图建立大得多也复杂得多的神经网络。很多深度学习的算法是半监督式学习算法,用来处理存在少量未标识数据的大数据集。常见的深度学习算法包括:受限波尔兹曼机(Restricted Boltzmann Machine, RBN), Deep Belief Networks(DBN),卷积网络(Convolutional Network), 堆栈式自动编码器(Stacked Auto-encoders)。
  • 降低维度算法
    像聚类算法一样,降低维度算法试图分析数据的内在结构,不过降低维度算法是以非监督学习的方式试图利用较少的信息来归纳或者解释数据。这类算法可以用于高维数据的可视化或者用来简化数据以便监督式学习使用。常见的算法包括:主成份分析(Principle Component Analysis, PCA),偏最小二乘回归(Partial Least Square Regression,PLS), Sammon映射,多维尺度(Multi-Dimensional Scaling, MDS), 投影追踪(Projection Pursuit)等。
  • 集成算法
    集成算法用一些相对较弱的学习模型独立地就同样的样本进行训练,然后把结果整合起来进行整体预测。集成算法的主要难点在于究竟集成哪些独立的较弱的学习模型以及如何把学习结果整合起来。这是一类非常强大的算法,同时也非常流行。常见的算法包括:Boosting, Bootstrapped Aggregation(Bagging), AdaBoost,堆叠泛化(Stacked Generalization, Blending),梯度推进机(Gradient Boosting Machine, GBM),随机森林(Random Forest),GBDT(Gradient Boosting Decision Tree)。
相关推荐
机器人虎哥3 分钟前
【8210A-TX2】Ubuntu18.04 + ROS_ Melodic + TM-16多线激光 雷达评测
人工智能·机器学习
罗小罗同学2 小时前
医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22
深度学习·机器学习·transformer
孤独且没人爱的纸鹤2 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
羊小猪~~2 小时前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
不去幼儿园4 小时前
【MARL】深入理解多智能体近端策略优化(MAPPO)算法与调参
人工智能·python·算法·机器学习·强化学习
无脑敲代码,bug漫天飞5 小时前
COR 损失函数
人工智能·机器学习
HPC_fac130520678166 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
老艾的AI世界14 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK2215114 小时前
机器学习系列----关联分析
人工智能·机器学习
FreedomLeo115 小时前
Python数据分析NumPy和pandas(四十、Python 中的建模库statsmodels 和 scikit-learn)
python·机器学习·数据分析·scikit-learn·statsmodels·numpy和pandas