MIT线性代数-方程组的几何解释

文章目录

  • [1. 二维空间](#1. 二维空间)
    • [1.1 行方向](#1.1 行方向)
    • [1.2 列方向](#1.2 列方向)
  • [2. 三维空间](#2. 三维空间)
    • [2.1 行方向](#2.1 行方向)
    • [2.2 列方向](#2.2 列方向)

假设有一个方程组 A X = B AX=B AX=B表示如下
2 x − y = 0 (1) 2x-y=0\tag{1} 2x−y=0(1)
− x + 2 y = 3 (2) -x+2y=3\tag{2} −x+2y=3(2)

  • 矩阵表示如下:

    2 − 1 − 1 2 \] \[ x y \] = \[ 0 3 \] (3) \\begin{bmatrix}2\&-1\\\\\\\\-1\&2\\end{bmatrix}\\begin{bmatrix}x\\\\\\\\y\\end{bmatrix}=\\begin{bmatrix}0\\\\\\\\3\\end{bmatrix}\\tag{3} 2−1−12 xy = 03 (3)

1.1 行方向

  • 从行的方向上可以得到如下图形:
  • 得到的交点M(1,2) 就是矩阵求得的x=1,y=2答案。

1.2 列方向

将方程变换成列方向,可得如下结构:
x [ 2 − 1 ] + y [ − 1 2 ] = [ 0 3 ] x\begin{bmatrix}2\\\\-1\end{bmatrix}+y\begin{bmatrix}-1\\\\2\end{bmatrix}=\begin{bmatrix}0\\\\3\end{bmatrix} x 2−1 +y −12 = 03

  • 可以看成两个向量a= [ 2 − 1 ] \begin{bmatrix}2\\\\-1\end{bmatrix} 2−1 ,b= [ − 1 2 ] \begin{bmatrix}-1\\\\2\end{bmatrix} −12 的线性组合。
  • 从列方向可以看出来,方程组可以看出来是以a= [ 2 − 1 ] \begin{bmatrix}2\\\\-1\end{bmatrix} 2−1 ,b= [ − 1 2 ] \begin{bmatrix}-1\\\\2\end{bmatrix} −12 为基,以 x, y 为系数,进行向量计算求得向量 [ 0 3 ] \begin{bmatrix}0\\\\3\end{bmatrix} 03

2. 三维空间

2.1 行方向

2 x − y = 0 ; − x + 2 y − z = − 1 ; − 3 y + 4 z = 4 2x-y=0;\quad-x+2y-z=-1;\quad-3y+4z=4 2x−y=0;−x+2y−z=−1;−3y+4z=4

三维图像如下:

  • 我们发现,对于方程组来说,我们从行方向画图的时候发现,特别难找到三个平面的交点,为此我们希望用更简单的方式看方程组(列方向)

2.2 列方向

  • 方程组: 2 x − y = 0 ; − x + 2 y − z = − 1 ; − 3 y + 4 z = 4 2x-y=0;\quad-x+2y-z=-1;\quad-3y+4z=4 2x−y=0;−x+2y−z=−1;−3y+4z=4
  • 转换成矩阵:
    x [ 2 − 1 0 ] + y [ − 1 2 − 3 ] + z [ 0 − 1 4 ] = [ 0 − 1 4 ] x\begin{bmatrix}2\\\\-1\\\\0\end{bmatrix}+y\begin{bmatrix}-1\\\\2\\\\-3\end{bmatrix}+z\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix}=\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix} x 2−10 +y −12−3 +z 0−14 = 0−14
  • 从列方向的角度来看,我们是以 a = [ 2 − 1 0 ] , b = [ − 1 2 − 3 ] , c = [ 0 − 1 4 ] a=\begin{bmatrix}2\\\\-1\\\\0\end{bmatrix},b=\begin{bmatrix}-1\\\\2\\\\-3\end{bmatrix},c=\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix} a= 2−10 ,b= −12−3 ,c= 0−14 为基,以x,y,z为系数画图,求得向量 z = [ 0 − 1 4 ] z=\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix} z= 0−14
  • 那么我们就可以以更简单的方式进行求解系数x,y,z
  • 通过矩阵方程和图形可以看出,当x=0,y=0,z=1时可以得到结果
    0 [ 2 − 1 0 ] + 0 [ − 1 2 − 3 ] + 1 [ 0 − 1 4 ] = [ 0 − 1 4 ] 0\begin{bmatrix}2\\\\-1\\\\0\end{bmatrix}+0\begin{bmatrix}-1\\\\2\\\\-3\end{bmatrix}+1\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix}=\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix} 0 2−10 +0 −12−3 +1 0−14 = 0−14
  • 只有当向量a,b,c 相互独立,那么就可以通过系数x,y,z来求得向量z;
  • AX=b 表示的是将A的列向量进行组合得到向量b.
相关推荐
AndrewHZ19 分钟前
【图像处理基石】什么是油画感?
图像处理·人工智能·算法·图像压缩·视频处理·超分辨率·去噪算法
Robot2511 小时前
「华为」人形机器人赛道投资首秀!
大数据·人工智能·科技·microsoft·华为·机器人
J先生x1 小时前
【IP101】图像处理进阶:从直方图均衡化到伽马变换,全面掌握图像增强技术
图像处理·人工智能·学习·算法·计算机视觉
Narutolxy4 小时前
大模型数据分析破局之路20250512
人工智能·chatgpt·数据分析
浊酒南街4 小时前
TensorFlow中数据集的创建
人工智能·tensorflow
2301_787552875 小时前
console-chat-gpt开源程序是用于 AI Chat API 的 Python CLI
人工智能·python·gpt·开源·自动化
layneyao5 小时前
AI与自然语言处理(NLP):从BERT到GPT的演进
人工智能·自然语言处理·bert
jndingxin6 小时前
OpenCV 的 CUDA 模块中用于将多个单通道的 GpuMat 图像合并成一个多通道的图像 函数cv::cuda::merge
人工智能·opencv·计算机视觉
格林威7 小时前
Baumer工业相机堡盟工业相机的工业视觉中为什么偏爱“黑白相机”
开发语言·c++·人工智能·数码相机·计算机视觉
IT古董7 小时前
【漫话机器学习系列】249.Word2Vec自然语言训练模型
机器学习·自然语言处理·word2vec