基于CNN多阶段图像超分+去噪(超级简单版)

这是之前的一项工作,非常简单,简单的复现了两个算法,然后把它们串起来了。

可执行的程序链接:CSDN; Github

我们分成两部分进行讲解:

1. 图像去噪

1.1 基本思路

图像的去噪工作基于很普通的CNN去噪,效果很差。

为了去除椒盐噪声并且提升暗图像的亮度,从以下方面入手:

1)针对椒盐噪声,使用了小核(3×3)中值滤波

2)针对图像亮度太低,梯度难以获取,使用直方图均衡化

3)使用传统CNN模型搭建去噪网络

4)增添了锐化环境,但不建议去噪时使用,效果并不好、

网络模型很简单,CNN模拟高斯滤波的去噪过程。本节采用17个3×3卷积核堆叠的形式(每层配BN层和Relu激活函数)。最后,将原图跳跃连接到最后一个3×3卷积的特征上(最后为通道压缩,则Tensor都为1×3×H×W)。训练思路为,有监督学习。

1.2 函数封装

直接在test_data里填写输入图片的路径即可

其余都不用管。

输出图片的路径很简单:

都可以进行更改。

最后的这个函数,是封装的函数。Hist是是否直方图增量,m_Blur是是否进行中值滤波,sharp是是否进行锐化(单独去噪程序不要使用,效果很差),kernal是中值滤波的卷积核大小(本文为3,太大容易模糊)

2. 图像超分

2.1 基本思路

也是很简单的基于ResNet的超分应用:

骨干网络很简单,堆叠额RFDB块+普通的3×3卷积构成一个端对端残差网络。最后使用上采样进行有监督学习。RFDB,参考的多半是MobileNet等残差块的设计,在我看来没啥创新的地方。不想多讲。就是一个深度的残差块。

我们综合的应用把锐化的函数加在了超分里,总体效果还可以。

2.2 函数封装

基本和图像去噪一样。单独使用,建议加上锐化。感觉还可以。

综合封装:

两个函数放在一起,参数是一样的。在这个函数里,我把属于图像去噪的锐化去除了。你直接运行我的程序就行了。

相关推荐
serve the people5 小时前
AI 模型识别 Nginx 流量中爬虫机器人的防御机制
人工智能·爬虫·nginx
PS1232325 小时前
桥梁与隧道安全守护者 抗冰冻型风速监测方案
大数据·人工智能
九鼎创展科技5 小时前
「有温度的陪伴」:基于全志 V821 的情感共鸣型实体机器人详解
linux·人工智能·嵌入式硬件·机器人
白熊1885 小时前
【论文精读】Transformer: Attention Is All You Need 注意力机制就是一切
人工智能·深度学习·transformer
CES_Asia6 小时前
资本赋能实体智能——2026 CES Asia机器人产业投资峰会定档北京
大数据·人工智能·microsoft·机器人
我不是QI6 小时前
周志华《机器学习—西瓜书》七
人工智能·机器学习
ELI_He9996 小时前
CLIP-ReID初尝试
人工智能·深度学习
牛客企业服务6 小时前
2025年AI面试深度测评:3款主流工具实战对比
人工智能·面试·职场和发展
北京耐用通信6 小时前
唤醒沉睡的“钢铁手臂”:耐达讯自动化PROFINET转DeviceNet网关如何让老旧焊接机器人融入智能产线
人工智能·物联网·网络协议·自动化·信息与通信
延凡科技6 小时前
延凡 APM 应用性能管理系统:AI+eBPF 驱动全栈智能可观测
大数据·人工智能·科技·能源