基于CNN多阶段图像超分+去噪(超级简单版)

这是之前的一项工作,非常简单,简单的复现了两个算法,然后把它们串起来了。

可执行的程序链接:CSDN; Github

我们分成两部分进行讲解:

1. 图像去噪

1.1 基本思路

图像的去噪工作基于很普通的CNN去噪,效果很差。

为了去除椒盐噪声并且提升暗图像的亮度,从以下方面入手:

1)针对椒盐噪声,使用了小核(3×3)中值滤波

2)针对图像亮度太低,梯度难以获取,使用直方图均衡化

3)使用传统CNN模型搭建去噪网络

4)增添了锐化环境,但不建议去噪时使用,效果并不好、

网络模型很简单,CNN模拟高斯滤波的去噪过程。本节采用17个3×3卷积核堆叠的形式(每层配BN层和Relu激活函数)。最后,将原图跳跃连接到最后一个3×3卷积的特征上(最后为通道压缩,则Tensor都为1×3×H×W)。训练思路为,有监督学习。

1.2 函数封装

直接在test_data里填写输入图片的路径即可

其余都不用管。

输出图片的路径很简单:

都可以进行更改。

最后的这个函数,是封装的函数。Hist是是否直方图增量,m_Blur是是否进行中值滤波,sharp是是否进行锐化(单独去噪程序不要使用,效果很差),kernal是中值滤波的卷积核大小(本文为3,太大容易模糊)

2. 图像超分

2.1 基本思路

也是很简单的基于ResNet的超分应用:

骨干网络很简单,堆叠额RFDB块+普通的3×3卷积构成一个端对端残差网络。最后使用上采样进行有监督学习。RFDB,参考的多半是MobileNet等残差块的设计,在我看来没啥创新的地方。不想多讲。就是一个深度的残差块。

我们综合的应用把锐化的函数加在了超分里,总体效果还可以。

2.2 函数封装

基本和图像去噪一样。单独使用,建议加上锐化。感觉还可以。

综合封装:

两个函数放在一起,参数是一样的。在这个函数里,我把属于图像去噪的锐化去除了。你直接运行我的程序就行了。

相关推荐
cdming9 分钟前
微软Win11双AI功能来袭:“AI管家”+聊天机器人重构桌面交互体验
人工智能·microsoft·机器人
罗西的思考31 分钟前
[Agent] ACE(Agentic Context Engineering)和Dynamic Cheatsheet学习笔记
人工智能·机器学习
fantasy_arch37 分钟前
transformer-注意力评分函数
人工智能·深度学习·transformer
逐云者12338 分钟前
自动驾驶强化学习的价值对齐:奖励函数设计的艺术与科学
人工智能·机器学习·自动驾驶·自动驾驶奖励函数·奖励函数黑客防范·智能驾驶价值对齐
BreezeJuvenile1 小时前
深度学习实验一之图像特征提取和深度学习训练数据标注
人工智能·深度学习
Dev7z1 小时前
舌苔舌象分类图像数据集
人工智能·分类·数据挖掘
万俟淋曦1 小时前
【论文速递】2025年第30周(Jul-20-26)(Robotics/Embodied AI/LLM)
人工智能·深度学习·ai·机器人·论文·robotics·具身智能
高洁011 小时前
大模型-高效优化技术全景解析:微调 量化 剪枝 梯度裁剪与蒸馏 下
人工智能·python·深度学习·神经网络·知识图谱
CoookeCola1 小时前
MovieNet(A holistic dataset for movie understanding) :面向电影理解的多模态综合数据集与工具链
数据仓库·人工智能·目标检测·计算机视觉·数据挖掘
张艾拉 Fun AI Everyday1 小时前
Gartner 2025年新兴技术成熟度曲线
人工智能